第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算 b : b=分子 / 分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中 ,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差.
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
扩展资料
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
参考资料:线性回归方程的百度百科
σ(西格玛)是指“和”(所有数加起来)
下面的i=1和上面的n是指从1到n
xi,yi------(i=1,2,3,4,......一直到n)
x上面一横表示所有x的平均数。y也是一样
例如n=4
x1=1
x2=2
x3=3
x4=4
y1=2
y2=4
y3=6
y4=8
那么x上面一横=10/4=2.5
y上面一横=20/4=5
σ(i=1
,4)(xi-x上面一横)(yi-y上面一横)/(xi-x上面一横)²=2
其实b是指斜率