证明:(1)∵AB=CD,AB=AE,
∴AE=CD,
∵矩形ABCD,
∴∠A=∠D=90°,
在△AEF和△DCE中
,
AF=CD ∠A=∠D AE=DF
∴△AEF≌△DCE;
(2)∵△AEF≌△DCE,
∴∠AFE=∠DCF,∠DFC=∠AEF,EF=FC,
又∵直角△AEF中,∠DFC+∠DCF=90°,
∴∠AFE+∠DFC=90°,
∴∠EFC=90°,
∴△EFC是等腰直角三角形.
作GK⊥CF,GH⊥EF,分别于点K和H.
则四边形HGKF是矩形,
∴∠HGK=90°,
∵GN⊥GM,
∴∠HGM=∠NGK,
又∵点G是线段CE的中点,
∴HG=GK,EH=HF=FK=CK,
在△GHM和△GKN中,
,
∠GHM=∠GNK ∠HGM=∠NGK GH=GN
∴△GHM≌△GKN,
∴HM=NK,
又∵EH=FK,
∴ME=NF.