(2014?南岸区二模)如图,在矩形ABCD中,点E在AB边上,点F在AD边上,且AE=DF,AF=CD,连接线段CE、EF、C

2025-03-31 12:09:13
推荐回答(1个)
回答1:

证明:(1)∵AB=CD,AB=AE,
∴AE=CD,
∵矩形ABCD,
∴∠A=∠D=90°,
在△AEF和△DCE中

AF=CD
∠A=∠D
AE=DF

∴△AEF≌△DCE;

(2)∵△AEF≌△DCE,
∴∠AFE=∠DCF,∠DFC=∠AEF,EF=FC,
又∵直角△AEF中,∠DFC+∠DCF=90°,
∴∠AFE+∠DFC=90°,
∴∠EFC=90°,
∴△EFC是等腰直角三角形.
作GK⊥CF,GH⊥EF,分别于点K和H.
则四边形HGKF是矩形,
∴∠HGK=90°,
∵GN⊥GM,
∴∠HGM=∠NGK,
又∵点G是线段CE的中点,
∴HG=GK,EH=HF=FK=CK,
在△GHM和△GKN中,
∠GHM=∠GNK
∠HGM=∠NGK
GH=GN

∴△GHM≌△GKN,
∴HM=NK,
又∵EH=FK,
∴ME=NF.