解答:
f(x)=x²-|x-a|+2
=>f(-x)
=x^2-|-x-a|+2
=x^2-|x+a|+2
1)设:f(x)是偶函数,则f(-x)=f(x)
得到:x²-|x-a|+2 =x^2-|x+a|+2
即:|x-a|=|x+a|
那么,只有当a=0时上式才成立。也就是说,a的值不是0的时候就不是偶函数了。所以,该函数不是偶函数。
2)设:f(x)是奇函数,则f(-x)=-f(x)
得到:x²-|x-a|+2 =-(x^2-|x+a|+2)
得到,不论当a为什么数,上式都不成立。所以,假设错误,也就是该函数不是奇函数。
综上:函数f(x)既不是偶函数也不是奇函数。
(看了上面写的过程你应该明白了吧,a为0的时候只是个特例,要使得函数f(x)是偶函数或者是奇函数或者是既奇既偶的话就必须对所有的a都成立才行)
你做的是对的,可以题目中漏了 a≠0这个条件了
还有一个注意的是判定奇偶性的第一步就是判别定义域是不是对称的