利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”。
然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限。
另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等。
常用导数公式:
1、y=c(c为常数) y'=0
2、y=x^n y'=nx^(n-1)
3、y=a^x y'=a^xlna,y=e^x y'=e^x
4、y=logax y'=logae/x,y=lnx y'=1/x
5、y=sinx y'=cosx
6、y=cosx y'=-sinx
7、y=tanx y'=1/cos^2x
8、y=cotx y'=-1/sin^2x
9、y=arcsinx y'=1/√1-x^2
10、y=arccosx y'=-1/√1-x^2
1、(x^n)'=nx^(n-1)
2、a'=0(常数的导数为0)
例题(x^3+2)'=(x^3)'+2'=3x^2
3、(longax)'=(1/x)logae
(log以a为底);特别的以e为底
例:log3x=(1/x)log3e
4、(a^x)'=(lna)a^x
(ln3=loge3)
例:3^x=(ln3)3^x
若有疑问可以追问!望采纳
这种他人劳动!谢谢
新年快乐