学习高等数学需要什么高中基础?

水利工程专业
2024-10-29 20:17:19
推荐回答(5个)
回答1:

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

回答2:

基础知识尽量都学扎实的好。主要需要以下基础:

1、导数和函数、复变函数与积分。

2、导数和函数要学好,这部分到大学还会进一步学习,大学微积分的学习,跟高中联系最紧密的就是函数导数和极限部分,这部分应该学好,空间几何也用到一些。

3、复变函数与积分的学习,与高中的复数有一点关系,高中学的是基础定义和部分应用,到大学会把微积分联系在一起深入学习,所以,学好复数部分对以后更好的学习有不少帮助。

高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。

导数和函数要学好,这部分到大学还会进一步学习,大学微积分的学习,跟高中联系最紧密的就是函数导数和极限部分,这部分应该学好,空间几何也用到一些。

指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数。

几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科研究生考试的基础科目。

扩展资料:

课程特点

三角函数在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。

至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

初等数学研究的是常量与匀变量,高等数学研究的是非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科。

也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。

参考资料来源:百度百科-高等数学

回答3:

1、导数和函数、复变函数与积分、概率论、线性代数。

2、复变函数与积分的学习,与高中的复数有一点关系,高中学的是基础定义和部分应用,到大学会把微积分联系在一起深入学习,所以,学好复数部分对以后更好的学习有不少帮助。

3、概率论的学习,不再像高中是学习排和组合,当然学好这部分的概率和期望对以后理解很有帮助,概率论更多的是学习其他概率分布模型。

4、线性代数的学习,是一门工程数学,解方程n元一次组,n维相量、矩阵等等,实际中应用广泛,好好理解下相量空间,这门学科跟以前联系不多,好好学一定会学好的。

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

扩展资料

数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。

最基本的极限过程是数列和函数的极限。数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。另外一些形式上更为抽象的极限过程,在别的数学学科中也都起着基本的作用。

还有许多学科的研究对象本身就是无穷多的个体,也就说是无穷集合,例如群、环、域之类及各种抽象空间。

参考资料来源:百度百科-高等数学

回答4:

基础知识尽量都学扎实的好。主要需要以下基础:

1、导数和函数、复变函数与积分。

1、导数和函数要学好,这部分到大学还会进一步学习,大学微积分的学习,跟高中联系最紧密的就是函数导数和极限部分,这部分应该学好,空间几何也用到一些。

2、复变函数与积分的学习,与高中的复数有一点关系,高中学的是基础定义和部分应用,到大学会把微积分联系在一起深入学习,所以,学好复数部分对以后更好的学习有不少帮助。

高等数学指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。

回答5:

基础知识尽量都学扎实的好。
⒈导数和函数要学好,这部分到大学还会进一步学习,大学微积分的学习,跟高中联系最紧密的就是函数导数和极限部分,这部分应该学好,空间几何也用到一些。
⒉复变函数与积分的学习,与高中的复数有一点关系,高中学的是基础定义和部分应用,到大学会把微积分联系在一起深入学习,所以,学好复数部分对以后更好的学习有不少帮助。
⒊概率论的学习,不再像高中是学习排和组合,当然学好这部分的概率和期望对以后理解很有帮助,概率论更多的是学习其他概率分布模型。
⒋线性代数的学习,是一门工程数学,解方程n元一次组,n维相量、矩阵等等,实际中应用广泛,好好理解下相量空间,这门学科跟以前联系不多,好好学一定会学好的。
总之,好学基础知识,对你的深造学习很有帮助;专业不同,可能学的学科数学也有少许不同,不过不管怎样,学好基础知识不是件坏事,更多的体验还要等你到了大学才能更好地感受。呵呵,希望对你有所帮助。