取倒数
(x+2)/(x+3)=√3+√2+1
(x+2)/(x+3)-1=√3+√2
-1/(x+3)=√3+√2
原式=[(x-3)/(2x-4)]÷[5-(x+2)(x-2)]/(x-2)]
=[(x-3)/2(x-2)]×[-(x-2)/(x²-9)]
=[(x-3)/2(x-2)]×[-(x-2)/(x+3)(x-3)]
=-1/(x+3)
=√3+√2
楼上错误,答案应该是1/2(根号2+根号3)
因
(x+3)/(x+2)
=
1/(√3+√2+1)
所以
X+2
=
(X+3)(√3+√2+1)
=(根号3+根号2+1)X+3(根号3+根号2+1)
所以
X+3
=
-(√3-√2)
所以
,原式=
(X-3)/(2X-4)
*
(X-2)/(9-X^2)
=
-1/2(X+3)=(√3+√2)/2
把题写清楚一些,比如=后面的根号2+1,1是不是在根号下,这些都要说清楚