如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足(a+b)2+|a-b+4|=0,过C作CB⊥x轴于B.(1)

2025-04-14 22:22:44
推荐回答(1个)
回答1:

(1)∵(a+b)2≥0,|a-b+4|≥0,(a+b)2+|a-b+4|=0
∴a=-b,a-b+4=0,
∴a=-2,b=2,
∵CB⊥AB
∴A(-2,0),B(2,0),C(2,2)

∴三角形ABC的面积=

1
2
×4×2=4;


(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,

∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=
1
2
×90°=45°;


(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,

把A(-2,0)、C(2,2)代入得
?2k+b=0
2k+b=2
,解得
k=
1
2
b=1


∴直线AC的解析式为y=
1
2
x+1,

∴G点坐标为(0,1),

∴S△PAC=S△APG+S△CPG=
1
2
|t-1|?2+
1
2
|t-1|?2=4,解得t=3或-1,

∴P点坐标为(0,3)或(-1,0).