如图,在三角形ABC和三角形DEF中,∠A=∠D =90度,AB=DE=3,AC=2DF=4.(1)判断这两个三角形是否相似?(2)能否

2025-04-13 20:19:54
推荐回答(2个)
回答1:

解:(1)不相似.(1分)
∵在Rt△BAC中,∠A=90°,AB=3,AC=4;
在Rt△EDF中,∠D=90°,DE=3,DF=2,
∵ ABDF= 32, ACDE= 43,
∴ ABDF≠ ACDE,
∴Rt△BAC与Rt△DFE不相似.(4分)

(2)能作如图所示的辅助线进行分割.
证明:作∠BAM=∠E,交BC于M;作∠NDE=∠B,交EF于N.(7分)
由作法和已知条件可知△BAM∽△DEN.(8分)
∵∠BAM=∠E,∠NDE=∠B,∠AMC=∠BAM+∠B,∠FND=∠E+∠NDE,
∴∠AMC=∠FND.(9分)
∵∠FDN=90°-∠NDE,∠C=90°-∠B,
∴∠FDN=∠C.
∴△AMC∽△FND.(10分)

回答2:

解:(1)不相似.(1分)
∵在Rt△BAC中,∠A=90°,AB=3,AC=4;
在Rt△EDF中,∠D=90°,DE=3,DF=2,
∵=,=,
∴≠,
∴Rt△BAC与Rt△DFE不相似.(4分)

(2)能作如图所示的辅助线进行分割.
证明:作∠BAM=∠E,交BC于M;作∠NDE=∠B,交EF于N.(7分)
由作法和已知条件可知△BAM∽△DEN.(8分)
∵∠BAM=∠E,∠NDE=∠B,∠AMC=∠BAM+∠B,∠FND=∠E+∠NDE,
∴∠AMC=∠FND.(9分)
∵∠FDN=90°-∠NDE,∠C=90°-∠B,
∴∠FDN=∠C.
∴△AMC∽△FND.(10分)