平行轴定理能够很简易地,从刚体对于一支通过质心的直轴的转动惯量,计算出刚体对平行于质心轴的另外一支直轴的转动惯量。平行轴定理、垂直轴定理、伸展定则,这些工具都可以用来求得许多不同形状的物体的转动惯量。因雅各·史丹纳而命名,史丹纳定理所指的几个理论,其中一个理论就是平行轴定理。平行轴定理能够很简易的,从对于一个以质心为原点的坐标系统的惯性张量
平行轴定理:求许多不同形状物体的转动惯量的理论
用质心运动定理中的能量部分:系统总动能=系统质心动能+系统绕质心转动动能。考虑一个绕某一点a(不一定是质心c)转动的物体,由上述定理,有:0.5jaw^2=0.5mvc^2+0.5jcw^2;其中vc=w*(lac),约取0.5w^2,得平行轴定理
微积分学过没有?