法一:
原式+1/128=1
所以原式=127/128
法二:
等比数列前n项和公式
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=1/2+(1/2)^2+(1/2)^3+……+(1/2)^7
=1/2×[1-(1/2)^7]/(1-1/2)
=1-(1/2)^7
=1-1/128
=127/128
可如下简便计算:
(1)用等比数列公式计算:
Sn=a1(1-q^n)/(1-q)
=(1/2)x[1-(1/2)^7]/(1-1/2)
=1-(1/2)^7
=1-1/128
=127/128
(2)1/2+1/4+1/8+1/16+1/32+1/64+1/128
=(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128)-1/128
=2x(1/2)-1/128
=1-1/128
=127/128
1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64+1/64-1/128=1-1/128=127/128