对于任意的x∈[0,π/2]有0≤sinx≤x所以(sinx)^n≤x^n又对于任意的x∈[0,1]有1+x≥1所以(sinx)^n/(x+1)≤x^n所以∫(sinx)^n/(x+1)*dx (积分范围[0,1])≤∫x^n*dx(积分范围[0,1])=x^(n+1)/(n+1)(积分范围[0,1])=1/(n+1)(积分范围[0,1])