首先要知道对称矩阵和反对称矩阵的定义,对称举证,就是A的转置等于A;反对称矩阵就是B的转置等于-B,由于证明过程要用到高等数学证明符号,如下图所示:
对称矩阵的基本性质:
1、每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。
2、若对称矩阵A的每个元素均为实数,A是Symmetric矩阵。
3、一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。
4、如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。
5、n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。
首先要知道对称矩阵和反对称矩阵的定义,对称举证,就是A的转置等于A;反对称矩阵就是B的转置等于-B,由于证明过程要用到高等数学证明符号,我把证明过程的截图发给你吧,
证明过程的截屏你可以放大看: