解:y=1/[(x²+1)/x²] =1/(1+1/x²)因为1/x²>0所以1/(1+1/x²)<1所以0≤y<1另解:(有界函数法)x^2=yx^2+yx^2=y/(1-y)≥0y(y-1)≤0(y≠1)0≤y<1
解:将函数变形 x^2=yx^2+y x^2-yx^2=y x^2=y/(1-y)≥0 y(y-1)≤0(y≠1) 0≤y<1