Eviews中,可以在数据描述中绘制直方图),该软件一并提供了Jarque-Bera(JB)检验结果,其零假设是数据服从正态分布,如果P值过小,表明拒绝零假设,数据不服从正态分布。
如下图所示,系列数据pool(Eviews软件自带数据br2.wf1)只有两类取值:0-1。
根据JB检验(4365.875),其P值为0.000000,完全属于非正态分布。
扩展资料:
正态分布特征
1.图形特征
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
关于μ对称,并在μ处取最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点,形状呈现中间高两边低,正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。
2.参数含义
正态分布有两个参数,即期望(均数)μ和标准差σ,σ2为方差。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
3.面积分布
(1)实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
(2)正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。
P{|X-μ|<σ}=2Φ(1)-1=0.6826
横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%。
P{|X-μ|<2σ}=2Φ(2)-1=0.9544
横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。
P{|X-μ|<3σ}=2Φ(3)-1=0.9974
由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。
由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。
参考资料来源:百度百科-正态分布
Eviews中,可以在数据描述中绘制直方图(view-descriptive statistics & tests-histogram and stats),该软件一并提供了Jarque-Bera(JB)检验结果,其零假设是数据服从正态分布,如果P值过小,表明拒绝零假设,数据不服从正态分布。如下图所示,系列数据pool(Eviews软件自带数据br2.wf1)只有两类取值:0-1。根据JB检验(4365.875),其P值为0.000000,完全属于非正态分布。
根据JB检验,probability越接近1越服从正态分布,越接近0越不服从
就看检验结果,丰度也可以看看