lim(n→∞) n^n/(n+1)^(n+1) =lim1/[(n+1)(1+1/n)^n)=0 ((1+1/n)^n趋于e)
lim(n→∞) n^n/(n+1)^(n+1)= lim(n→∞) n^n/(n+1)^n*(n+1)= lim(n→∞) [1-1/(1+n)^n] /(n+1) = 1/e * lim(n→∞) 1 /(n+1) = 0
lim(n→∞) n^n/(n+1)^(n+1) =lim(n→∞)1/(n+1)[1+1/n)^(n )= 0