(1)
∵向量a=(根号下3,-1),b=(1/2,根号下3/2).
∴|a|=2,|b|=1
a●b=√3/2-√3/2=0
x=ta+(t^2-5t+1)b,
y=-ka+b 【这里有问题,b的系数变成了1】
∵x垂直于y,
∴x●y=0
即[ta+(t^2-5t+1)b]●[-ka+b]=0
∴-tk|a|²+(t²-5t+1)|b|²+[t-k(t²-5t+1)a●b=0
∴-4tk+(t²-5t+1)=0
∴k=(t²-5t+1)/(4t)
(2)
k=1/4[t+1/t-5] (0
当t=1时取等号
∴t+1/t-5≥-3
∴k=(t²-5t+1)/(4t)≥-3/4
即k的最小值为-3/4