如何理解傅里叶变换和小波变换

2024-11-03 00:53:07
推荐回答(1个)
回答1:

首先本文不是要从艰深的数学基础出发来解释傅里叶或者小波变换,仅仅总结一下自己再理解傅里叶和小波变换时候的心得。 傅里叶变换: 1)首先傅里叶变换是傅里叶级数(有限周期 函数) 向(无限周期 函数)的扩展,将该函数展开成无限多个任意周期的正弦或余弦函数的和(或积分)。 2)傅里叶级数中各项系数例如cosx项系数是原函数与其在某一定义域内的积分,显然我们可以将该过程理解为对这两个函数进行相关,将相关系数作为该频率处的强度。 3)经过傅里叶变换之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。 4) 从泛函的角度,我们可以把傅里叶级数中的三角函数{1/sqrt(2π),sin(t)/sqrt(π),cos(t)/sqrt(π),...}看做一个线性函数空间的一个基,这里与线性代数里的线性空间有两点不同,第一该处是函数空间,每个元素都是一个函数而不是一个数,第二这里是无限维空间,基有无限多个元素。但是这并不影响我们的理解。我们可以像在有限维线性空间中那样将傅里叶变换理解为这个函数在以三角函数为基的空间的展开,而将傅里叶逆变换理解为一个旋转(或其他变换),举个例子:一个立方体,正着放的时候我们看到的是正面(频域),当我们旋转一下,我们可能看到其他面比如反面(时域)。 短时傅里叶变换: 由上叙述可知傅里叶变换之后的图像仅包含频域信息,丢失了时域信息,在那些同时需要频域和时域信息的时候(在什么时候存在哪些频率)就显得无能为力,因此出现了短时傅里叶变换,短时傅里叶变换认为在一个小的时间段deltat内信号是稳定的,信号包含的频率是不变的,利用一个窗口函数与原始函数卷积,在特定的时间仅计算该时间前后共deltat时间内的信号的傅里叶变换作为该时间点的傅里叶变换,即该时刻的频谱。