(1)证明:因为an+1=2an+n-1(n∈N*),所以an+1+(n+1)=2(an+n)(n∈N*),
所以数列{an+n}是以a1+1=
为首项,2为公比的等比数列;1 2
(2)解:∵数列{an+n}是以a1+1=
为首项,2为公比的等比数列1 2
∴an+n=
×2n-1=2n-2,即an=2n-2-n,1 2
∴数列{an}的前n项和为Sn=
-
(1?2n)1 2 1?2
=2n?1?n(1+n) 2
?n(1+n) 2
;1 2
(3)解:对任意的n∈N*,Sn+1-2Sn=2n?
?(2+n)(1+n) 2
-2[2n?1?1 2
?n(1+n) 2
]=1 2
(n2?n?1)1 2
当n∈N*时,
(n2?n?1)是增函数,1 2
n=1时,
(n2?n?1)=-1 2
<0,即Sn+1-2Sn<0,所以Sn+1<2Sn;1 2
n=2时,
(n2?n?1)=1 2
>0,即Sn+1-2Sn>0,所以Sn+1>2Sn;1 2
n>2时,
(n2?n?1)>1 2
>0,即Sn+1-2Sn>0,所以Sn+1>2Sn;1 2
综上,当n=1时,Sn+1<2Sn;当n≥2时,Sn+1>2Sn.