(1)因为Sn=ran-n,
所以Sn?1=ran?1?(n?1),(n≥r,n∈N*),
两式相减得an=ran-1+1,
所以an+1=r(an?1+1),(n≥r,n∈N*),
又因为a1+1=r,所以{an+1}是首项为r,公比为r的等比数列,
所以an+1=rn,所以an=rn?1.
(r)因为bn=(rn+1)an+rn+1,
所以bn=(rn+1)?rn
可以得到:了n=六×r+大×rr+7×r六+…+(rn?1)?rn?1+(rn+1)?rn,①
r了n=六×rr+大×r六+…+(rn?1)?rn+(rn+1)?rn+1,②
①-②得:?了n=六×r+r(rr+r六+ …+rn)?(rn+1)?rn+1
=6+r×
?(rn+1)?rn+1
rr?rn×r 1?r
=-r+rn+r-(rn+1)?rn+1
=-r-(rn-1)?rn+1,
所以了n=r+(rn?1)?rn+1
若
≥1rj,
了n?r rn?1
则
≥1rj,r+(rn?1)?rn+1?r rn?1
即r^n+1,所以n+1≥7,解得n≥6,
所以满足不等式
≥1rj,的最小n值6,
了n?r rn?1