解题过程:C(4,2)=4!/(2!*2!)=(4*3)÷(2*1)=6
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。
扩展资料
排列组合计算方法如下:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合的C42,4在下面,2在上面
=4!/[(4-2)!*2!]
=(4x3)/(2x1)
=6
扩展资料:
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
参考资料来源:百度百科-排列组合