天文卫星有什么用处和功能

2024-12-04 19:26:14
推荐回答(2个)
回答1:

天文卫星,是对宇宙天体和其他空间物质进行科学观测的人造地球卫星。传统的天文观测都是在地面上由天文台利用各种天文仪器进行的。但是来自天体的辐射绝大部分被地球大气层所阻挡,很大部分的宇宙真相不能看到。天文卫星在离开地面几百千米或更高的轨道上运行,因为没有大气层的阻挡,卫星上所载的仪器能接收到来自天体的从无线电波段到红外波段、可见光波段、紫外波段直到X射线波段和γ射线波段的电磁波辐射。天文卫星的观测推动了太阳物理、恒星和星系物理的迅速发展,并且促进了一门新型的分支学科——空间天文学的形成。

X射线天文卫星
X射线天文卫星是观测天体的X射线辐射为主要目的的人造卫星,是X射线天文学的主要研究设备。

天文卫星图册
第一颗X射线天文卫星是1970年12月12日美国在肯尼亚发射的乌呼鲁卫星,该卫星原名“探险者42号”,又名“小型天文卫星1号”(SAS-1),因发射当天正值肯尼亚独立7周年纪念日而得名Uhuru(兹瓦西里语意为“自由”)。卫星上装有两个相互反向的X射线探测器,利用卫星的旋转进行了系统的X射线巡天,确定了约350个X射线源,发现了许多银河系中的X射线双星、来自遥远星系团的X射线,以及第一个黑洞候选天体——天鹅座X-1。乌呼鲁卫星的观测取得了极大的成功,被认为是X射线天文学发展史上的一座里程碑。

除了乌呼鲁卫星以外,1970年代至1980年代,各国还相继发射了一系列X射线天文卫星,包括英国的羚羊5、荷兰天文卫星、美国的小型天文卫星3号、高能天文台1号(1977年)和高能天文台2号(又名“爱因斯坦卫星”)、欧洲的X射线天文卫星(EXOSAT)、日本的银河卫星等,其中1978年发射的爱因斯坦卫星首次采用了大型掠射式X射线望远镜,能够对X射线源进行成像,是1970年代取得成果最多的X射线卫星。
1999年发射的钱德拉X射线天文台20世纪90年代,意大利和荷兰共同研制的BeppoSAX卫星发现了伽玛射线暴的X射线余辉。德国、美国、英国联合研制的伦琴卫星(ROSAT)首次在软X射线波段进行了巡天观测,在9年时间里新发现了7万多个X射线源,使X射线源的总数达到了12万个。1993年日本发射的ASCA卫星则首先将CCD设备用于X射线成像。美国的罗西X射线时变探测器(RXTE)虽然不能成像,但是能够探测X射线源的快速光变。1999年,两个重要的X射线天文卫星先后发射升空——美国的钱德拉X射线天文台和欧洲的XMM-牛顿卫星。前者具有极高的空间分辨率(小于1角秒)和较宽的能段(0.1-1keV),后者则具有非常高的谱分辨率。它们是21世纪初X射线天文学主要的观测设备,取得了一大批重要的研究成果。除此之外,1990年代升空的X射线望远镜还有俄罗斯发射的探测高能X射线的伽马1卫星、日本发射的用于观测太阳耀斑的阳光卫星等。
小型天文卫星
美国发射的一种天文卫星系列﹐英文缩写是SAS。被列入“探险者”(Explorer)卫星系列的编号。计画发射四颗﹐
天文卫星图册
现已发射三颗﹐在X射线和γ射线波段范围探测宇宙。计画轨道是高度555公里左右的圆轨道﹐沿赤道运行﹐周期95分。卫星形状为圆柱体﹐直径60厘米左右﹐高度不超过1米半﹐总重量小于200公斤。SAS-A(“探险者”42号)于1970年12月12日发射﹐适值肯尼亚独立纪念日﹐故命名为“自由号”(Uhuru﹐斯瓦希里语自由之意)。携带的仪器有两个X射线准直正比计数器组﹐重量63.5公斤﹐每组由六个单独的正比计数器组成﹐探测的能量范围是2~20千电子伏﹐探测极限约为2×10光子数/(厘米·秒)。卫星的探测任务是:进行高灵敏度﹑高分辨率的X射线源巡天观测。研究X射线源强度随时间的变化。

确定X射线源在2~20千电子伏范围内的能量分布。“自由号”卫星首次完成了X射线波段系统的巡天工作﹐提供了全天的X射线源分布图﹐并据以编成自由号X射线源表﹐这标志著X射线天文学发展到一个新阶段。SAS-B(“探险者”48号)于1972年11月15日发射。携有火花室探测γ射线﹐以研究银河系及河外的γ射线源的空间分布和能量分布﹐探测能段是20~200兆电子伏。饪盼佬欠⑾忠酉抵行挠屑岣坏摩梅洎r并探测到显然是来自河外星系的γ辐射和来自巨蟹座星云的高能γ辐射。SAS-C(“探险者”53号)于1975年5月7日发射。

卫星沿Z轴稳定地以每秒01的速度转动。自转轴的指向受地面指令控制﹐X轴在±25范围内相对一选定的源以每秒001的速度来回转动。SAS-C进行四项实验﹕河外X射线源分析﹐目的是确定极弱的河外X射线源的位置﹔探测器包括转动调制准直器和铍窗正比计数器。银河X射线源分析﹐目的是确定银河X射线源位置﹐并监测这些源的强度变化﹔探测器包括转动调制准直器﹑板式准直器和铍窗正比计数器。天蝎座X-1源的连续X射线变化监测。目的是以
天文卫星图册
约1/4的卫星转动时间监测亮X射线点源﹔探测器包括板式和管式准直器﹑铍窗和钛窗正比计数器。银河X射线吸收测绘﹐目的是测量低能弥漫X射线背景强度随银纬的变化﹐以确定星际物质的密度和分布﹔探测器包括薄窗和铍窗正比计数器﹑管状准直器和X射线集光器等。

红外线天文卫星
红外线天文卫星是在太空中的天文台,以红外线巡天,执行勘查整个天空的任务。
红外线天文卫星是美国的NASA、荷兰的NIVR与英国的SERC联合执行的计划,于1983年1月25日发射升空,任务执行了10个月之久。IRAS以12、25、60和100微米的四种波长描绘了96%的天空,在12微米上的解析力是0.5',100微米的解析力是2'。他发现了500,000个红外线源,迄今还有许多个尚待进一步的研究。大约有75,000个相信是仍然处在恒星诞生阶段的星爆星系,其他许多则是处在行星形成阶段,有尘埃组成的星盘环绕着的一般恒星。新的发现包括环绕在织女星周围的尘埃盘和银河核心的第一张影像。
IRAS的寿命,像其他的红外线卫星一样,受限于冷却系统:有效的在红外领域中工作,卫星必须冷却到难以想像的低温。IRAS携带了720升的超流体氦,借由超流体的蒸发让卫星保持在1.6K(-272°C)的低温。卫星温度一旦上升,便会妨碍观测的进行。

如果有问题请追问,希望楼主参考!

回答2:

天文卫星的用处和功能:
1,天文卫星,是用于观测宇宙天体和其他空间物质的人造地球卫星.天文卫星运行在几百千米的圆形或近圆形轨道上,没有地球大气层的阻挡,卫星所载仪器能接收来自天体的从无线电波段到红外波段、可见光波段 、紫外波段直到X射线波段和γ射线波段的电磁波辐射,提供一个完整的宇宙图像。
2,天文卫星按观测目标的不同划分为太阳观测卫星和非太阳观测卫星;按所载仪器主要观测波段的不同划分为红外天文卫星、紫外天文卫星、X射线天文卫星和γ射线天文卫星,。
3,天文卫星的观测推动了太阳物理、恒星和星系物理的迅速发展,促进空间天文学发展成为一门独立的分支学科,。
4,天文卫星对于了解宇宙的奥秘,观察星体的具体运行轨道和周期。一些太空的奇异现象有一个直观的认识。
5,天文卫星从通讯到天气,都可以帮助人类,还有一些可以为科研所用的。