已知x>y>0 x+y≤2 求2⼀(x+3y) +1⼀(x-y)最小值

2024-12-05 03:20:40
推荐回答(1个)
回答1:

x>y>0,x+y≤2,
∴2/(x+3y)+1/(x-y)
=(√2)²/(x+3y)+1²/(x-y)
≥(√2+1)²/[(x+3y)+(x-y)]
=(3+2√2)/[2(x+y)]
≥(3+2√2)/4.
故(x+3y):√2=(x-y):1且x+y=2,
即x=-1+2√2,y=3-2√2时,
所求最小值为: (3+2√2)/4。