以下从动力学的角度,探讨诺尔特地区花岗质岩浆的物理性质及其演化机理。
2.9.1 岩浆中的水(1)花岗质岩浆中水的溶解度Burnham(1979)曾系统地研究了水在铝硅酸盐岩浆内的溶解行为,并建立了相应的热力学模型,该模型假设水在岩浆中的溶解机制与其在钠长石熔体中的溶解机制相同。水在钠长石熔体中的溶解机制可用以下两式来描述:
当
新疆诺尔特地区岩浆活动与成矿作用
当
新疆诺尔特地区岩浆活动与成矿作用
其中,m表示熔体,v表示含水流体相,
选取诺尔特地区加里东晚期的塔斯比克都尔根黑云母花岗岩体及阔科亚克达热斯黑云母花岗岩体,华力西中期阔克牙克达拉斯花岗斑岩体、华力西晚期海尔特黑云母花岗岩体及燕山期阿提什二长花岗岩体进行讨论,温度(T)及压力(p)参数取其结晶时的温度、压力,根据物理化学计算,各岩体的温度、压力依次为:塔斯比克都尔根岩体:760℃,76MPa;阔科亚克达热斯岩体:720℃,106MPa;阔克牙克达拉斯岩体:740℃,88MPa;海尔特岩体:740℃,88MPa;阿提什岩体:730℃,94MPa。
先计算
(a)对于CIPW计算中不含标准刚玉矿物分子的岩石:
Me=w/nA1
其中,w为除H2O以外的各主要氧化物质量分数之和,nAt为Al的离子数。
(b)对CIPW计算中含标准刚玉分子的岩石,NaAlSi3O8分子数为所有可交换阳离子数之和,此处,除Si4+,Al4+,Ti4+以外的所有阳离子均认为是可交换的,此时:
Me=w/∑ni
其中,ni为某个可交换阳离子的数目。
(c)若Si4+离子数>3∑ni,则
Me=w/[∑ni+0.19(nSi-3∑ni)]
本区的花岗岩均属于上述特点,计算结果见表2-15。
之后,计算
新疆诺尔特地区岩浆活动与成矿作用
求给定温度及压力下水在岩浆中的饱和摩尔分数
岩浆中水的质量百分溶解度据下式求得:
当
当
新疆诺尔特地区岩浆活动与成矿作用
故岩浆中水的溶解度为
由计算可见,本区花岗岩均属于
(2)花岗质岩浆中水的含量
根据硅酸盐熔体中水的含量
表2-15 诺尔特地区花岗质岩浆中水溶解度计算表
表2-16 诺尔特地区花岗质熔体含水量、源岩含水量及产生的熔体量
阿克提什坎矿区的阿提什岩体的岩浆含水量为4.90%,而水的溶解度为4.49%,水过饱和,这表明岩浆在结晶前和结晶过程中都会有大量水析出,因此,在成矿作用过程中为成矿热液提供岩浆热液和部分成矿物质是可能的。这与后文氢、氧同位素的研究结论是一致的。
而对于塔斯比克都尔根、阔克牙克达拉斯、海尔特及阔科亚克达热斯等岩体,其含水量达不到饱和状态,可能也是导致与这些花岗岩体有关的矿化不发育的原因。
2.9.2 源岩的含水量及产生的熔体量
根据对诺尔特地区花岗岩源岩成分的模拟计算结果(表2-14),花岗岩源岩由泥质岩及基性岩组成,进而根据Clemens等(1987)在分析了各类岩石的含水矿物含量、岩石含水量与熔融条件关系基础上计算得到的缺乏流体的熔融作用中温度、源岩含水量与所产生的熔体体积分数之间的关系和本区花岗岩起源物理化学条件的研究,取0.5GPa的压力,由源岩中壳幔物质比例计算得到本区花岗岩源岩的含水量及产生的熔体量(表2-16)。可见,源岩的含水量在0.99%~1.07%之间,而产生的熔体量为36%~41%。
为了表达岩浆性质从液态行为向固态行为的转换过程,Arzi(1987)提出了“流变学临界熔体百分数”的概念(RCMP),当熔体分数小于CMF值(临界流体分数)时,部分熔融岩石或岩浆的有效粘度急剧增大,不利于熔体从残晶中分凝或晶体分异和岩浆流动。对花岗质岩浆而言,体积分数30%作为CMF是合理的(马昌前,1994;Wickman,1987)。因此,区内花岗岩的形成,应属于高熔体分数条件下的部分熔融作用过程。
2.9.3 花岗质岩浆的粘度和密度
(1)粘度
Shaw(1972)根据实验结果,在阿累尼乌斯粘度-温度关系的基础上提出了计算粘度的经验公式,该方法考虑了熔体中溶解的水对粘度的影响,因此,实际计算时利用前文得到的水含量对熔体各组分加以校正。计算的花岗质熔体在不同温度(T=800~1300℃)下的粘度如表2-17所示。此外,根据Spera(1982)的资料,随着岩浆中晶体含量的增加,会使其流变学性质复杂化,对于晶体含量不特别多的岩浆来说,可根据下列关系考虑晶体含量对岩浆粘度的影响(马昌前,1987):
μe=μ(1—Rx)-2.5
其中,μe为含晶体的岩浆的有效粘度,μ为熔体粘度,x为晶体的体积分数,R为常数(对于非球状晶体,取值1.67)。
对于花岗质岩浆,如果岩浆的液相线温度约为1000℃,则花岗质岩浆的晶体含量(x)与温度(t℃)的关系可用下式计算(Huppert,1988):
x=4.33×10-3(∆t)
表2-17 诺尔特地区花岗质熔体在不同温度下的粘度 Pa·s
其中,∆t为初熔温度与全熔温度的差值。对于诺尔特地区的花岗质岩浆,考虑Q+Or+Ab+An+H2O体系,取∆t=50℃,因此,岩浆的晶体含量约为0.2165。
由计算的熔体粘度及岩浆有效粘度(表2-17)看,晶体的含量对粘度的大小影响是明显的,将增大岩浆的粘度;岩浆的粘度随着温度的升高急剧降低,岩浆的流动性增强,此时晶体含量对岩浆粘度的影响降低。
(2)密度
对任意温度下硅酸盐熔体密度的计算必须综合考虑硅酸盐的熔体结构、温压条件、化学成分、各氧化物的偏摩尔体积等复杂因素(Bottinga和Well,1970;Bottinga,1982;Sparks,1984)。当xSiO2在0.4~0.8范围内时,可认为SiO2等组分的偏摩尔体积与化学成分无关(标准误差一般小于2%)(Sparks,1984;马昌前,1987),因此,诺尔特地区花岗质岩浆硅酸盐熔体在不同温度下的密度计算可采用Bottinga(1970)、莫宣学(1982,1984)的公式计算。计算得到本区花岗质熔体的密度在2.1~2.3g/cm3之间(800~1300℃),随着温度的升高,密度减小(表2-18)。
表2-18 诺尔特地区花岗质熔体在不同温度下的密度
2.9.4 岩浆上升的速度与侵位机制
(1)上升速度
诺尔特地区的花岗岩分布受红山嘴大断裂控制,岩体均沿红山嘴断裂及其次级断裂分布,如阿提什岩体及阔克牙克达拉斯岩体的分布位于红山嘴大断裂的次级层间逆断层与北北西向断裂及近东西向平移小断层的交汇处。因此,区内各岩体岩浆的上侵状况可近似用一维槽状流体行为进行模拟(Kushiro,1980;周涛发等,1995)。
区内各岩体的围岩密度取2823kg·m-3,岩浆上侵时的裂隙宽分别考虑5m、10m、20m、50m、100m的情况,上侵温度则分别取800℃、900℃、1000℃、1100℃及1200℃,计算结果如表2-19所示。由岩浆上侵速度计算结果可知,当温度一定时,裂隙越宽,则上侵速度越快;当裂隙宽度一定时,温度越高,则上侵速度越快。通常认为,岩浆的上侵速度与定位深度有一定关系,上侵速度大,动能大,则定位浅。但是从本区的情况看,并没有体现出这种关系,阔克牙克达拉斯岩体是浅成侵入花岗斑岩体,从其岩浆上侵速度看,对定位深浅的影响并不明显。岩浆上升速度主要是受其自身性质(成分、含水量、粘度、密度等)、岩浆的导通构造、围岩的物理性质及区域构造应力场特点等因素综合控制。
(2)侵位机制
以往认为,花岗岩类之所以能从岩浆房上升侵位到地壳的较浅层次,是由于花岗质岩浆密度小于围岩的密度,在重力作用下,密度倒置引起岩浆上升侵位(Ramberg,1970,1981;Marsh,1982)。近年来,野外调查、力学研究和实验模拟均表明,区域水平挤压对岩浆上升也起了重要作用,在一些强烈挤压造山带、地台褶皱带内部,强烈的水平挤压使岩浆以气球膨胀式侵位(马昌前,1988;Ramsay,1989;Hutton,1982)。总之,岩浆上升所受的驱动作用是复杂的,有时以一种为主,有时两种共同作用,例如在区域拉张环境中,密度倒置和均衡调节起主导作用;在区域挤压和造山期间,起主要作用的则是水平挤压和密度倒置;若岩浆密度大于围岩密度,则又以水平挤压或均衡调节起主导作用。诺尔特地区各期花岗岩的形成主要与造山作用有关,因此,其岩浆上升应受水平挤压和密度倒置作用的共同驱动,其岩浆的侵位机制可用Castro(1987)的“同构造隆起作用”描述。
表2-19 诺尔特地区花岗质岩浆上侵速度
2.9.5 花岗质岩浆的对流作用及持续时间
当部分熔融带中形成的熔体数超过“临界熔体分数”(CMF)时,岩浆的活动性就大大增强,重力不稳定性将为岩浆上升提供驱动力,在岩浆体内部有可能发生对流作用。对流作用可以由温度梯度或成分梯度引起,同时由温度和成分梯度引起的不稳定性称为双扩散对流(马昌前,1987)。热扩散引起的不稳定性一般比质量扩散引起的不稳定性大,凡具有水平温度梯度的流体,都会发生对流,如果只有垂向温度梯度,则能否发生对流取决于无量纲瑞利数(Ra(。部分熔融带中的对流,实质上是一个多孔介质流体问题(Yoder Jr.,1990),故可以采用多孔介质系统瑞利数表达式。
对于本区的情况,源岩中产生的熔体分数超过了“临界熔体分数”,且岩浆中所含晶体相对较少(x<0.25,Kerr等,1991),因此,应用下式计算瑞利数:
Ra=g·ρ·αT·∆T·L3/K·μ
其中,g为重力加速度,ρ为岩浆密度,αT为热膨胀系数(花岗质岩浆可取9.4×10-5K),∆T为距离L内的温差,L为岩浆体顶底面的距离(本文采用岩体直径代表),K为岩浆的热扩散率(可取10-6m2·s-1),μ为岩浆粘度。此时,临界瑞利数取Rc=104(马昌前,1988),即只要Ra>Rc,则对流就能发生。
在温度为800~1200℃之间,各岩体的Ra值计算结果如表2-20所示。可见,各岩浆体只要存在很小的温差,就可以满足Ra>104,即只要存在一很小的温度梯度,岩浆便可产生对流。例如,当∆T=1K,T=800℃时,各岩浆体的Ra值范围为3.6961×108~5.4783×1010,远远大于104。因此,本区花岗质岩浆中对流作用是存在的。
表2-20 诺尔特地区花岗质岩浆瑞利数计算结果
岩浆体中的对流速度可用下式计算(Marsh,1985):
v0=0.258K/L·Ra1/2
其中,v0为对流速度(cm/s),K为热扩散率(cm2/s),L为边界层间的距离(cm)。区内花岗质熔体在不同温度下(800~1200℃)、不同温差(∆T=1K,10K,50K)下的对流速度计算结果如表2-21所示。可见,温度越高,温差越大,对流速度越快。岩浆对流与否,对岩浆冷却速度影响较大,对流岩浆冷却速度比不对流岩浆约快24倍(Marsh,1985;周涛发等,1995),而对流速度越快,必然也导致冷却速度越快,这可以从对流持续时间上反映出来。
对于热对流的持续时间,可采用Tait等(1990)的计算方法,计算的区内花岗质岩浆不同温度、不同温差下的热对流持续时间如表2-22所示。计算结果表明,温度越高,温差越大,对流速度越快,而对流持续时间越短,随着温度降低,温差减小,则对流持续时间变长。例如,塔斯比克都尔根岩体,当∆T=50K,T=1100C,对流持续时间仅为0.1a;当∆T=50K,T=800℃时,对流持续时间则增加到17.3a。
这里所讨论的热对流持续时间是指无外部热源持续供热的情况,因此,在对流过程中热传输速率的增大使得岩浆加速冷凝,降低了岩浆的活动性。如果系统外有热源持续供热,则不仅热对流持续时间将大大延长,而且通过对流还能加快热传输速率,促进部分熔融带的加大,此外,还可促进残晶与熔体分离和组分的扩散传输,这些过程,都有助于增强岩浆的活动性。因此,对本区而言,幔源岩浆从下部的加热,对花岗质岩浆的分凝上升是有重要意义的。
表2-21 诺尔特地区花岗质岩浆的对流速度
表2-22 诺尔特地区花岗质岩浆对流持续时间
2.9.6 岩体冷却时间
根据Marsh等(1985)关于近地表的岩体冷凝到固相线温度所需的时间公式计算,诺尔特地区各岩体的冷却时间依次为:塔斯比克都尔根岩体,3.1273×1012s(99166.8a);阔科亚克达热斯岩体,5.5589×1011S(17627.Oa);阔克牙克达拉斯岩体,4.8499×1010s(1537.9a);海尔特岩体,8.8972×1011s(28212.7a);阿提什岩体,1.9589×1010s(621.2a)。本区岩体越大,冷却时间越长,各岩体冷却时间范围(理论值)在621.2~99166.8a之间。
2.9.7 花岗质岩浆的演化
岩浆系统本质上是一个非平衡的、开放的自组织系统,相同的成分演变趋势可以由多种岩浆动力学过程产生。在全面的地质学、岩石学、地球化学、岩相学特征分析基础上,以下应用岩浆动力学原理,定量考察有关诺尔特地区花岗岩的岩浆过程动力学约束条件及成分演化的动力学机理。
(1)部分熔融作用与分凝作用
在部分熔融作用过程中,能够导致岩浆成分变化的主要方式是残余体不完全分离和渐进深熔作用。残余体不完全分离是由于岩浆源区条件变化而使形成的熔体与难熔残余间产生不同程度分离的过程,强烈分离条件下就可形成含残余组分少的,接近低熔点成分的岩浆,分离作用较弱时,岩浆中就含有较多的难熔组分,这些残余组分不等的岩浆相继上侵到地壳浅部,就构成了成分不同的岩石单元。这些与熔体的分凝和上升机制有关。而渐进深熔作用是指同种源岩发生部分熔融过程中,因外部热源的持续加热,或压力持续降低,或游离水的不断引入,使源岩的部分熔融程度逐渐增大,由此而产生成分和物理性质发生变化的多种熔体的过程。尽管渐进深熔作用能产生不同成分和特点的熔体,但这种作用能否记录在固结的岩石中,则取决于岩浆侵位前的动力学过程,包括熔体的分凝以及岩浆的对流作用(Trial,1990)。对花岗岩微量元素协变关系的讨论已经表明,诺尔特地区各时期花岗岩成岩过程中属部分熔融机理,但是具体是何种部分熔融过程却是不清楚的。导致这种现象的原因很可能是岩浆演化过程中存在的对流作用使得岩浆发生了均匀化,本区花岗质岩浆的对流作用是普遍存在的。在部分熔融作用过程中,熔体的分凝及在源区和上升过程中岩浆的对流,将会导致岩浆成分的演化。
对于低度部分熔融,一般把熔体与残余体的分凝问题当作二相流动问题处理。本区源区产生的熔体量已经超过花岗质岩浆的临界熔体分数,因此,熔体与残余晶体的分离,可以按晶体在低密度粘性流体中下沉的情况来处理。
据斯托克斯定律加以修改,得到分凝速度表达式(Arndt,1987),斜长石密度取ρ=2.54×103kg/m3,计算在T=800℃时,斜长石颗粒半径分别为0.0001m,0.0005m,0.005m,0.01m时熔体与晶体的分凝情况。诺尔特地区岩浆分凝速度计算结果见表2-23。
由计算结果可见,区内花岗质熔体中分凝作用是存在的,晶体颗粒越大,则分凝速度越大。虽然分凝作用是存在的,但是分凝速度较小,在10-11~10-16m/s之间,反映了较弱的分凝作用。例如,当a=0.01m时,在1Ma的时间尺度内(变质-深熔作用持续的时间为1~10Ma,Wickham,1990),熔体与晶体的分离距离为180m;而若a=0.001m,则分离距离仅为1.8m,这几乎可以忽略不计。
表2-23 诺尔特地区花岗质岩浆分凝速度
分凝作用对于大颗粒的残余体的分离作用是明显的,而对于小颗粒的残余体的分离作用很小。因此,经过分凝作用之后,岩浆的成分发生了变化,岩浆中依然存在小颗粒的耐熔残晶,这可能也是在本区花岗岩体中几乎未见深源捕虏体或暗色包体的原因。
(2)岩浆中晶体的分布
采用参数S(Marsh,1985)来衡量岩浆中的晶体分布,本区花岗质岩浆中对流作用是强烈的,因此,在对流条件下,S的表达式为:
S=0.86(∆ρ·a2)(g/ρf·μ·α·∆T·L·K)1/2
其中,∆ρ为晶体与熔体的密度差,a为晶体半径,g为重力加速度,ρf为熔体密度,μ为熔体粘度,α为热膨胀系数,K为热扩散系数,∆T为层厚度为L的温差。
考虑最大温差∆T=50K的情况,计算本区花岗质岩浆中不同温度(800~1200C)下不同半径的晶体(0.0005m,0.001m,0.005m,0.01m)的分布参数如表2-24所示。
对于S参数,根据大小,可分为几种情况:
(i)S≈0,晶体基本上是自由浮动的,晶体的运动轨迹是流体本身的运动轨迹,可用流函数来描述;
(ii)S>1,流体流动速度很低或晶体下沉速度很大,流体运动对晶体分布影响不大;
(iii)S=1,流体恰能支撑晶体,但当流体侧向运动时,晶体将下沉一定的距离;
(iv)0<S<1时,有部分晶体能在流动的流体中滞留(既不悬浮,也不下沉)。
由计算结果可见,参数S受温度及晶体半径的影响,随温度的增大,半径的增大而增大,对本区花岗质岩浆,S的范围在10-3~10-9之间,由于分凝作用的存在,岩浆中大于0.01m的颗粒可能很少,参数S可认为属于近似于0的范畴。因此,岩浆中晶体基本上是自然浮动的,晶体的运动受流体的运动控制,这也是在岩浆演化过程中主要受密度差控制的分离结晶作用不明显的原因。可见在本区,流体的运动对晶体的分布起主要作用,因此,岩浆中的对流作用可能会对岩浆演化过程中成分的变异起控制作用。
(3)对流作用与岩浆成分的变异
根据前文的研究,岩浆中对流作用的存在可能是岩浆成分变异的控制因素。以下利用花岗岩斜长石粒度分布的体视学特征来讨论在岩浆成分变异过程中对流的作用。花岗岩的结构是岩浆作用的最直接记录,对于如何通过岩石结构的研究提取造岩作用信息,Cashman和Marsh(1988)将化工和金相学中发展起来的体视学方法引入地质系统,研究了玄武岩中斜长石和橄榄石的晶体大小分布(CSD)及其结晶动力学意义。
表2-24 诺尔特地区花岗质岩浆不同温度下不同半径的晶体分布参数
对于区内各花岗岩体,有如下特征:
①岩体中不同部位的样品岩石化学成分相似,岩石结构一致,野外研究表明不存在明显的相变,因此,可以认为晶体在岩浆中不同部位停留的时间是相近的;
②岩体与围岩的接触变质晕不发育,反映岩体侵位时自身的热动力活动性不强,也反映了岩浆侵位时含有较多的晶体。由于斜长石是早结晶的矿物,因而,大多数斜长石颗粒应是在侵位之间成核和长大的;
③斜长石的生长速率在低过冷度条件下并不随过冷度或熔体成分而明显改变(Cash-man,1990),因此,斜长石的晶体大小分布主要依赖于岩浆中有关的造晶组分的含量。
基于此,可以用斜长石晶体大小分布的体视学分析来研究本区花岗质岩浆的演化机理。
矿物粒度分布的控制方程为:
新疆诺尔特地区岩浆活动与成矿作用
其中,N为单位体积岩石(浆)中的累积晶体数,n为单位长度(L)单体体积岩石(浆)中的晶粒数(no·cm-4),称为粒度密度。假定晶体在熔体中停留时间(τ)及系统的体积保持不变,则系统中晶体数目的增减服从下列控制方程:
∂n/at+∂(Yn)/∂L+n/τ=0
其中,t为时间,Y为晶体生长速度,在定态条件下(∂n/∂t=0),若晶体的生长速度Y与晶体大小无关,则有
新疆诺尔特地区岩浆活动与成矿作用
对于区内的花岗岩,考虑三种情况:
(i)岩浆没有经过成分的变异。此时系统封闭,晶体在熔体中的停留时间τ与晶体大小无关,(a)式积分有:
新疆诺尔特地区岩浆活动与成矿作用
其中,n0为L等于0时的粒度密度,即成核密度,β1=1/Yr。
(ii)岩浆中经过了受密度差控制的结晶分异作用。此时系统开放,晶体的沉降速度可表示为:
μs=2gL2∆ρ/9η
其中,L为球状晶体半径,∆ρ为晶体与熔体间密度差,η为熔体粘度,g为重力加速度。由此可得晶体在熔体中停留时间(τ)与晶体大小(L)的依赖关系:
τ=C/L2
其中,C为与△ρ,η,g和晶体运动距离有关的常数。在定态条件下,有:
新疆诺尔特地区岩浆活动与成矿作用
其中,β2=1/3CY。
(iii)在对流条件下,晶体与熔体的分离(对流分异作用)。这种情况下,熔体在多孔介质中的运移速度为uf,晶体运动速度为us,有:
us=[φL2∆ρg/24πη]+uf
其中,φ为系统中熔体的体积分数。由此,晶体与熔体接触时间为:
r=A/(B+L2C)
在定态条件下,有:
新疆诺尔特地区岩浆活动与成矿作用
其中,β1=B/AY,β2=C/AY,A为与η和晶体运动距离有关的常数(24πηs),B=24πηuf,C=φ∆ρg。
对区内花岗岩薄片中的斜长石进行了测量统计,并将斜长石颗粒大小转换为等面积圆的半径L,进一步按0.01cm的间隔对不同L的数据分组统计晶粒数,将各组的晶粒数除以总的测量面积后得到每一粒级单位面积的晶粒数NAi。再根据NVi=(NAi)3/2的关系(Van-der Voort,1984)将单位面积的颗粒数(NAi)转换为单位体积的颗粒数(NVi),将各组的NVi除以分组间隔,即得到粒度密度ni的值。
根据式(b),(c),(d),对测量数据回归得到的系数、残差平方和(RSS)及平均残差平方和(RMS)如表2-25所示,并依据平均残差平方和比较拟合的优劣。
由拟合结果可见,各岩体的情况是相似的。首先,岩石斜长石粒度分布与由斯托克斯方程导出的(c)式相差甚远,反映了岩浆中成分的变异不是由受密度差控制的结晶分异控制的,这与前文中利用微量元素协变关系得到的成岩机制结论是一致的,即在成岩作用过程中,分离结晶不是其主要成岩机制。斜长石粒度分布与封闭系统的线性模型(b)式也有差异,即在部分熔融的成岩作用中.岩浆的成分发生了变化,母岩浆在演化的过程中应该存在成分的变异。在回归分析中,拟合得最好的是对流分异作用,这个结果与前面讨论的岩浆对流作用以及岩浆中晶体分布的结论是相符合的。这反映了在岩浆对流的条件下,岩浆成分的变异是通过晶体与熔体的差异运动而实现的。由于边界层流动状态的影响,使得这种成分的演化方式在微量元素协变关系中无法反映出来(马昌前,1994)。
表2-25 诺尔特地区花岗岩中斜长石颗粒大小分布的回归拟合
综上所述,诺尔特地区花岗岩在其部分熔融的成岩作用过程中,经历了成分的变异,大颗粒的残余体由于分凝作用而分离,由于岩浆中对流的存在,晶体的分布主要是受对流作用控制,在对流过程中,发生了对流分异作用,导致晶体与熔体产生差异运动而分离,岩浆成分发生变化。对流分异作用促进了物质产生再分配与转移聚集,使得成矿作用有可能发生。不论是侵位机制还是岩浆演化都受控于岩浆所处的热动力条件,环境所具有的热动力条件又带来岩体热演化特征的差别,并制约了热液渗流过程和成矿作用。