(2^2+4^2+6^2+…+98^2+100^2)-(1^2+3^2+5^2+…+97^2+99^2
=(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+...+(98^2-97^2)+(100^2-99^2)
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+...+(98+97)(98-97)+(100+99)(100-99)
=1+2+3+4+5+6+...+97+98+99+100
=5050(高斯定理,很明显了)
把对应项分别组合后变形:2*2-1*1=(2+1)*(2-1);4*4-3*3=(4+3)*(4-3);……所以原式可化为求1到100的和。即5050
(2^2+4^2+6^2+…+98^2+100^2)-(1^2+3^2+5^2+…+97^2+99^2)
=(2^2-1^2)+(4^2-3^2)+(6^2-5^2)+...+(98^2-97^2)+(100^2-99^2)
=(2+1)(2-1)+(4+3)(4-3)+(6+5)(6-5)+...+(98+97)(98-97)+(100+99)(100-99)
=3+7+11+……+199
=(3+199)*100/2
=10100
5050