∵四边形ABCD为平行四边形∴AB=CD,∠A=∠C,∠ADC=∠CBA∵DF平分∠ADC,BE平分∠CBA∴∠ADF=1/2∠ADC=1/2∠CBA=∠CBE在△ADF和△CBE中∠A=∠CAD=BC∠ADF=∠CBE∴△ADF≌△CBE(ASA)∴AF=CE
af=ce证明:∵df平分∠adc∴∠adf=∠cdf∵ab‖cd∴∠afd=∠cdf∴∠adf=∠afd∴af=ad同理可得ce=bc∵abcd是平行四边形∴ad=bc∴af=ce