女》(1909-10年)的影响:画家不仅用了欧几里得几何学,还同时运用了其他多种几何学和透视学方法绘图。
而到了现代,数学在非实用的道路上越走越远。与雅可比同时代的数学家伽罗瓦(?variste Galois,1812-1832)由于发现了用标准代数方法判断任意一个方程是否可解的方法而永垂不朽。这是数学史上的大事——然而这个方法是如此麻烦(伽罗瓦自己也坦然承认),以至于仅仅对一个方程作出判断,就可能耗费一个数学家一生的时间。同样是在19世纪,非欧几何诞生了。这个领域描绘了一个奇妙的世界,在这个世界里图形的形状取决于它们的体积。之后,康托尔又发现了无穷大的不同阶次,这在数学界引发了一场暴风骤雨,而对圈外人来说,只是一阵小小的涟漪罢了。
有的时候人们会说,在数学的某些领域,虽然研究时并没有以实际应用为目标,最终却产生了令始创者都没有想到的实际应用。然而,高等数学领域是例外:绝大多数的高等数学研究,自被发现以来,都一直保持着原初的状态,看不到任何投入实际应用的可能性。所以说,高等数学就仅仅是一群受过高度训练的专业人员玩的智力游戏吗?如果是这样,我们为什么还要在意这些成果呢?
埃瓦利斯特·伽罗瓦,不知名的艺术家所作(图片来自维基共享)
对于这个问题,伟大的英国数学家G.H. 哈代,给出了一个答案:“如果非要给真正的数学赋予意义的话,那么只能将其看作是艺术。”这个回答可能会让雅可比感到高兴,但对于那些一心想要为数学找到一个实在用途的人们来说,或许并不会满意。
所以这里给出另外一个答案:数学是关于秩序的科学,而一直以来,人们都在用数学来规范他们的人生、社会和世界。
想想柏拉图的例子吧——这位古希腊哲学家曾经在自己的学园门口刻上这样的字样:“不懂几何者,不得入内。”他对几何学如此热爱,以至于不仅将它视为获得最高真理的典范,也视为获得他崇尚的政治秩序的基础。几何学中的每一件事都有着清晰、理性、不可动摇的位置,而柏拉图的理想国也是如此,在国家的阶级体系中,每一个人都有明确的位置。柏拉图设想的由哲学家统领的、等级严明的寡头政治体系放到今天或许会让大家感到排斥,然而从他所在的时代一直到今天,他的理想国对改革者们来说一直都是一个文明有序的社会范本。