复变函数的积分
a.注:只有当函数解析即满足柯西-黎曼公式时求积分才与路径无关只与出没位置有关。(勿乱用)
做题思路:
首先看积分曲线是不是闭曲线,不是闭曲线的话只能用最一般的方法做,就是用复数的各种表达式进行转化,如果是闭曲线,就有许多很好的方法。这是要找出函数所有不解析的点,看闭曲线内部有没有不解析的点,如果没有,根据柯西古萨基本定理,这个积分就等于0,如果有不解析的点,先看被积函数的表达式,如果是简单的f(z)dz/(z-z0)形式的可使用柯西积分公式(某些较复杂的形式往往可以通过变形变成这种形式),否则就要用留数定理计算了,这就需要进一步确定奇点的类型(可去,极点,本性),然后根据相应的法则求出各奇点的留数,再用留数定理求积分。
用留数定理,tanz=sinz/cosz 在 IzI=2内有两个一级极点 z=π/2 和 z=-π/2,则积分结果为-4πi。
求复变函数的积分