求e的-x次方导数

2024-11-01 00:06:29
推荐回答(4个)
回答1:

e的负x次方的导数为 -e^(-x)。

计算方法:

{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)

本题中可以把-x看作u,即:

{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。

扩展资料:

复合函数求导,链式法则:

若h(a)=f[g(x)],则h'(a)=f’[g(x)]g’(x)。

链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。”

常用导数公式:

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna,y=e^x y'=e^x

4.y=logax y'=logae/x,y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

回答2:

结果为:e^x

先求函数f(x)=a^x(a>0,a≠1)的导数

f'(x)=lim[f(x+h)-f(x)]/h(h→0)

=lim[a^(x+h)-a^x]/h(h→0)

=a^x lim(a^h-1)/h(h→0)

对lim(a^h-1)/h(h→0)求极限,得lna

∴f'(x)=a^xlna

即(a^x)'=a^xlna

当a=e时

∵ln e=1

∴(e^x)'=e^x

扩展资料

求导数的方法:

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。

回答3:

e的负x次方的导数为 -e^(-x)。

计算方法:

{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)

本题中可以把-x看作u,即:

{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。

扩展资料:

如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

参考资料来源:百度百科——导数

回答4:

f(x)=e^(-x)
f'(x)=e^(-x)·(-x)'=-e^(-x)
x^n,n为常数,x^n不是复合函数(x^sinx 之类才是)