2010义乌中考数学

我要2010义乌中考数学答案!!
2024-11-23 05:48:51
推荐回答(3个)
回答1:

浙江省2010年初中毕业生学业考试(义乌市卷)
数学试题卷
考生须知:
1. 全卷共4页,有3大题,24小题. 满分为120分.考试时间120分钟.
2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.
3. 请考生将姓名、准考证号填写在答题纸的对应位置上,并认真核准条形码的姓名、准考证号.
4. 作图时,可先使用2B铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑.
5. 本次考试不能使用计算器.
温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
参考公式:二次函数y=ax2+bx+c图象的顶点坐标是 .
试 卷 Ⅰ
说明:本卷共有1大题,10小题,每小题3分,共30分.请用2B铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
1. -2的相反数是
A.2 B.-2 C.- D.
2.28 cm接近于
A.珠穆朗玛峰的高度 B.三层楼的高度 C.姚明的身高 D.一张纸的厚度
3.下列运算正确的是
A. B. C. D.
4.下列几何图形中,即是中心对称图形又是轴对称图形的是
A.正三角形 B.等腰直角三角形 C.等腰梯形 D.正方形
5.下列长度的三条线段能组成三角形的是
A.1、2、3.5 B.4、5、9 C.20、15、8 D.5、15、8
6.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,
已知线段PA=5,则线段PB的长度为
A.6 B.5 C.4 D.3
7.如下左图所示的几何体的主视图是

8.下列说法不正确的是
A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形

9.小明打算暑假里的某天到上海世博会一日游,上午可以先从台湾馆、香港馆、韩国馆中随机选择一个馆, 下午再从加拿大馆、法国馆、俄罗斯馆中随机选择一个馆游玩.则小明恰好上午选中台湾馆,下午选中法国馆这两个场馆的概率是
A. B. C. D.
10.如图,将三角形纸片 沿 折叠,使点 落
在 边上的点 处,且 ‖ ,下列结论中,
一定正确的个数是
① 是等腰三角形 ②
③四边形 是菱形 ④

A.1 B.2 C.3 D.4
试 卷 Ⅱ

说明:本卷共有2大题,14小题,共90分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.
二、填空题(本题有6小题,每小题4分,共24分)
11.从26个英文字母中任意选一个,是C或D的概率是 ▲ .
12.在直角三角形中,满足条件的三边长可以是 ▲ .(写出一组即可)
13.已知直线 与⊙O相切,若圆心O到直线 的距离是5,则⊙O的半径是 ▲ .
14.改革开放后,我市农村居民人均消费水平大幅度提升.下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元). 则这几年我市农村居民人均食品消费支出的中位数是 ▲ 元,极差是 ▲ 元.
年份 2004 2005 2006 2007 2008 2009
人均食品消费支出 1674 1843 2048 2560 2767 2786

15.课外活动小组测量学校旗杆的高度.如图,当太阳光线
与地面成30°角时,测得旗杆AB在地面上的投影BC长
为24米,则旗杆AB的高度约是 ▲ 米.(结果保
留3个有效数字, ≈1.732)
16.(1)将抛物线y1=2x2向右平移2个单位,得到
抛物线y2的图象,则y2= ▲ ;
(2)如图,P是抛物线y2对称轴上的一个动点,
直线x=t平行于y轴,分别与直线y=x、
抛物线y2交于点A、B.若△ABP是以点A
或点B为直角顶点的等腰直角三角形,求满
足条件的t的值,则t= ▲ .

三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17.(1)计算: °
(2)化简:
18.(1)解不等式: ≥
(2)解分式方程:
19.我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.
(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍? (结果精确到整数)
(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?
20.“知识改变命运,科技繁荣祖国”.我市中小学每年都要举办一届科技运动会.下图为我市某校2009年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:

(1)该校参加车模、建模比赛的人数分别是 ▲ 人和 ▲ 人;
(2)该校参加航模比赛的总人数是 ▲ 人,空模所在扇形的圆心角的度数是 ▲ °,
并把条形统计图补充完整;(温馨提示:作图时别忘了用0.5毫米及以上的黑色签
字笔涂黑)
(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖. 今年我市
中小学参加航模比赛人数共有2485人,请你估算今年参加航模比赛的获奖人数约
是多少人?
21. 如图,以线段 为直径的⊙ 交线段 于点 ,点 是 的中点, 交 于点 , °, , .
(1)求 的度数;
(2)求证:BC是⊙ 的切线;
(3)求 的长度.
22.如图,一次函数 的图象与反比例函数 的
图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y
轴于点B.一次函数的图象分别交 轴、 轴于点C、D,
且S△PBD=4, .
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当 时,一次函数的值大于反比例
函数的值的 的取值范围.
23.如图1,已知∠ABC=90°,△ABE是等边三角形,点P
为射线BC上任意一点(点P与点B不重合),连结AP,
将线段AP绕点A逆时针旋转60°得到线段AQ,连结
QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF= ▲ °,
猜想∠QFC= ▲ °;
(2)如图1,当点P为射线BC上任意一点时,猜想
∠QFC的度数,并加以证明;
(3)已知线段AB= ,设BP= ,点Q到射线
BC的距离为y,求y关于 的函数关系式.
24.如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示 - ,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、 轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

感谢义乌市数学命题人:教研室魏跃军老师第一时间6月12日晚10点传给本人!!!
上传人:稠州中学丹溪校区:刘小平

浙江省2010年初中毕业生学业考试(义乌市卷)
数学参考答案和评分细则
一、选择题(本题有10小题,每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10
答案 A C B D C B B D A C

二、填空题(本题有6小题,每小题4分,共24分)
11. 12. 3、4、5(满足题意的均可) 13. 5
14. 2304,1112 (每空2分)
15. 13.9
16.(1)2(x-2)2 或 (2分)
(2)3、1、 、 (注:共2分.对一个给0.5分,得2分的要全对,其余有错不倒扣分)
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17. 解:(1)原式=1+2-1 (算对一项或两项给1分,全对2分) …………………………2分
=2……………………………………………………………………………3分
(2)原式= ……………………………………………………………1分
= ……………………………………………………………… 2分
= ……………………………………………………………………3分
18. 解:(1) ≥ …………2分 得 x≥3 ………………………………3分
(2) ……………………………………………………………1分
……………………………………………………………………2分
…………2.5分 经检验 是原方程的根…………………3分
19. 解:(1)(35.2-1.01)÷1.01≈34
答:1999年的成交金额比1995年约增加了34倍…………………………3分
(2)设2000年成交金额为x亿元,则2009年成交金额为(3x-0.25)亿元
………1分 解得:x=38.56
∴ >100……………………………………………………2分
∴2009年“义博会”的成交金额突破了百亿元大关.………………………3分
20.(1) 4 , 6 …………………………………………………(每空1分,共2分)
(2) 24 , 120 ………………………………………………(每空1分,共2分)
(图略)…………………………………………………………………………………3分
(3)32÷80=0.4……………………1分 0.4×2485=994
答:今年参加航模比赛的获奖人数约是994人.………………………………3分
21.解:(1)∵∠BOE=60° ∴∠A = ∠BOE = 30°……………………2分
(2)在△ABC中 ∵ ∴∠C=60°…1分 又∵∠A =30°
∴∠ABC=90°∴ ……2分 ∴BC是⊙ 的切线……………3分
(3)∵点M是 的中点 ∴OM⊥AE………………………………………1分
在Rt△ABC中 ∵ ∴AB= 6……2分
∴OA= ∴OD= ∴MD= ………………………3分
22.解:(1)在 中,令 得 ∴点D的坐标为(0,2)………2分
(2)∵ AP‖OD ∴Rt△PAC ∽ Rt△DOC…………………………………1分
∵ ∴ ∴AP=6…………………………2分
又∵BD= ∴由S△PBD=4可得BP=2…………………………3分
∴P(2,6) …………4分 把P(2,6)分别代入 与 可得
一次函数解析式为:y=2x+2…………………………………………………5分
反比例函数解析式为: ………………………………………………6分
(3)由图可得x>2…………………………2分
23.解: (1) 30°...............................1分
= 60°..................................2分
(2) =60°.....................................1分
不妨设BP> , 如图1所示
∵∠BAP=∠BAE+∠EAP=60°+∠EAP
∠EAQ=∠QAP+∠EAP=60°+∠EAP
∴∠BAP=∠EAQ..........................................2分
在△ABP和△AEQ中 AB=AE,∠BAP=∠EAQ, AP=AQ
∴△ABP≌△AEQ(SAS).........................3分
∴∠AEQ=∠ABP=90°...............................4分
∴∠BEF
∴ = 60°…………………………............5分
(事实上当BP≤ 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)
(3)在图1中,过点F作FG⊥BE于点G
∵△ABE是等边三角形 ∴BE=AB= ,由(1)得 30°
在Rt△BGF中, ∴BF= ∴EF=2.......1分
∵△ABP≌△AEQ ∴QE=BP= ∴QF=QE+EF ................2分
过点Q作QH⊥BC,垂足为H
在Rt△QHF中, (x>0)
即y关于x的函数关系式是: .......................................................3分
24.解:(1)对称轴:直线 ……………………………………………………..… 1分
解析式: 或 ……………………………….2分
顶点坐标:M(1, )……….…………………………………………..3分
(2)由题意得
3……………………………………..1分
得: ①…………….………………….……2分

得: ②….………………………………………..………..3分
把②代入①并整理得: (S>0) (事实上,更确切为S>6 )4分
当 时, 解得: (注:S>0或S>6 不写不扣
分) 把 代入抛物线解析式得 ∴点A1(6,3)………5分
(3)存在………………………………………………………………….…..……1分
解法一:易知直线AB的解析式为 ,可得直线AB与对称轴的
交点E的坐标为
∴BD=5,DE= ,DP=5-t,DQ= t
当 ‖ 时,
得 ………2分
下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G
①当 时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ
∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴
∴ 得 ∴ (舍去)…………………………3分
② 当 时,如图1-2
∵△FQE∽△FAG ∴∠FAG=∠FQE
∵∠DQP=∠FQE ∠FAG=∠EBD
∴∠DQP=∠DBE 易得△DPQ∽△DEB

∴ , ∴
∴当 秒时,使直线 、直线 、 轴围成的三角形与直线 、直线 、抛物线的对称轴围成的三角形相似………………………………4分
(注:未求出 能得到正确答案不扣分)
解法二:可将 向左平移一个单位得到 ,再用解法一类似的方法可求得
, ,
∴ , .

回答2:

浙江省2010年初中毕业生学业考试(义乌市卷)
数学参考答案和评分细则
一、选择题(本题有10小题,每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10
答案 A C B D C B B D A C

二、填空题(本题有6小题,每小题4分,共24分)
11. 12. 3、4、5(满足题意的均可) 13. 5
14. 2304,1112 (每空2分)
15. 13.9
16.(1)2(x-2)2 或 (2分)
(2)3、1、 、 (注:共2分.对一个给0.5分,得2分的要全对,其余有错不倒扣分)
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17. 解:(1)原式=1+2-1 (算对一项或两项给1分,全对2分) …………………………2分
=2……………………………………………………………………………3分
(2)原式= ……………………………………………………………1分
= ……………………………………………………………… 2分
= ……………………………………………………………………3分
18. 解:(1) ≥ …………2分 得 x≥3 ………………………………3分
(2) ……………………………………………………………1分
……………………………………………………………………2分
…………2.5分 经检验 是原方程的根…………………3分
19. 解:(1)(35.2-1.01)÷1.01≈34
答:1999年的成交金额比1995年约增加了34倍…………………………3分
(2)设2000年成交金额为x亿元,则2009年成交金额为(3x-0.25)亿元
………1分 解得:x=38.56
∴ >100……………………………………………………2分
∴2009年“义博会”的成交金额突破了百亿元大关.………………………3分
20.(1) 4 , 6 …………………………………………………(每空1分,共2分)
(2) 24 , 120 ………………………………………………(每空1分,共2分)
(图略)…………………………………………………………………………………3分
(3)32÷80=0.4……………………1分 0.4×2485=994
答:今年参加航模比赛的获奖人数约是994人.………………………………3分
21.解:(1)∵∠BOE=60° ∴∠A = ∠BOE = 30°……………………2分
(2)在△ABC中 ∵ ∴∠C=60°…1分 又∵∠A =30°
∴∠ABC=90°∴ ……2分 ∴BC是⊙ 的切线……………3分
(3)∵点M是 的中点 ∴OM⊥AE………………………………………1分
在Rt△ABC中 ∵ ∴AB= 6……2分
∴OA= ∴OD= ∴MD= ………………………3分
22.解:(1)在 中,令 得 ∴点D的坐标为(0,2)………2分
(2)∵ AP‖OD ∴Rt△PAC ∽ Rt△DOC…………………………………1分
∵ ∴ ∴AP=6…………………………2分
又∵BD= ∴由S△PBD=4可得BP=2…………………………3分
∴P(2,6) …………4分 把P(2,6)分别代入 与 可得
一次函数解析式为:y=2x+2…………………………………………………5分
反比例函数解析式为: ………………………………………………6分
(3)由图可得x>2…………………………2分
23.解: (1) 30°...............................1分
= 60°..................................2分
(2) =60°.....................................1分
不妨设BP> , 如图1所示
∵∠BAP=∠BAE+∠EAP=60°+∠EAP
∠EAQ=∠QAP+∠EAP=60°+∠EAP
∴∠BAP=∠EAQ..........................................2分
在△ABP和△AEQ中 AB=AE,∠BAP=∠EAQ, AP=AQ
∴△ABP≌△AEQ(SAS).........................3分
∴∠AEQ=∠ABP=90°...............................4分
∴∠BEF
∴ = 60°…………………………............5分
(事实上当BP≤ 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)
(3)在图1中,过点F作FG⊥BE于点G
∵△ABE是等边三角形 ∴BE=AB= ,由(1)得 30°
在Rt△BGF中, ∴BF= ∴EF=2.......1分
∵△ABP≌△AEQ ∴QE=BP= ∴QF=QE+EF ................2分
过点Q作QH⊥BC,垂足为H
在Rt△QHF中, (x>0)
即y关于x的函数关系式是: .......................................................3分
24.解:(1)对称轴:直线 ……………………………………………………..… 1分
解析式: 或 ……………………………….2分
顶点坐标:M(1, )……….…………………………………………..3分
(2)由题意得
3……………………………………..1分
得: ①…………….………………….……2分

得: ②….………………………………………..………..3分
把②代入①并整理得: (S>0) (事实上,更确切为S>6 )4分
当 时, 解得: (注:S>0或S>6 不写不扣
分) 把 代入抛物线解析式得 ∴点A1(6,3)………5分
(3)存在………………………………………………………………….…..……1分
解法一:易知直线AB的解析式为 ,可得直线AB与对称轴的
交点E的坐标为
∴BD=5,DE= ,DP=5-t,DQ= t
当 ‖ 时,
得 ………2分
下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G
①当 时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ
∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴
∴ 得 ∴ (舍去)…………………………3分
② 当 时,如图1-2
∵△FQE∽△FAG ∴∠FAG=∠FQE
∵∠DQP=∠FQE ∠FAG=∠EBD
∴∠DQP=∠DBE 易得△DPQ∽△DEB

∴ , ∴
∴当 秒时,使直线 、直线 、 轴围成的三角形与直线 、直线 、抛物线的对称轴围成的三角形相似………………………………4分
(注:未求出 能得到正确答案不扣分)

回答3:

浙江省2010年初中毕业生学业考试(义乌市卷)
数学参考答案和评分细则
一、选择题(本题有10小题,每小题3分,共30分)

题号 1 2 3 4 5 6 7 8 9 10
答案 A C B D C B B D A C

二、填空题(本题有6小题,每小题4分,共24分)
11. 12. 3、4、5(满足题意的均可) 13. 5
14. 2304,1112 (每空2分)
15. 13.9
16.(1)2(x-2)2 或 (2分)
(2)3、1、 、 (注:共2分.对一个给0.5分,得2分的要全对,其余有错不倒扣分)
三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)
17. 解:(1)原式=1+2-1 (算对一项或两项给1分,全对2分) …………………………2分
=2……………………………………………………………………………3分
(2)原式= ……………………………………………………………1分
= ……………………………………………………………… 2分
= ……………………………………………………………………3分
18. 解:(1) ≥ …………2分 得 x≥3 ………………………………3分
(2) ……………………………………………………………1分
……………………………………………………………………2分
…………2.5分 经检验 是原方程的根…………………3分
19. 解:(1)(35.2-1.01)÷1.01≈34
答:1999年的成交金额比1995年约增加了34倍…………………………3分
(2)设2000年成交金额为x亿元,则2009年成交金额为(3x-0.25)亿元
………1分 解得:x=38.56
∴ >100……………………………………………………2分
∴2009年“义博会”的成交金额突破了百亿元大关.………………………3分
20.(1) 4 , 6 …………………………………………………(每空1分,共2分)
(2) 24 , 120 ………………………………………………(每空1分,共2分)
(图略)…………………………………………………………………………………3分
(3)32÷80=0.4……………………1分 0.4×2485=994
答:今年参加航模比赛的获奖人数约是994人.………………………………3分
21.解:(1)∵∠BOE=60° ∴∠A = ∠BOE = 30°……………………2分
(2)在△ABC中 ∵ ∴∠C=60°…1分 又∵∠A =30°
∴∠ABC=90°∴ ……2分 ∴BC是⊙ 的切线……………3分
(3)∵点M是 的中点 ∴OM⊥AE………………………………………1分
在Rt△ABC中 ∵ ∴AB= 6……2分
∴OA= ∴OD= ∴MD= ………………………3分
22.解:(1)在 中,令 得 ∴点D的坐标为(0,2)………2分
(2)∵ AP‖OD ∴Rt△PAC ∽ Rt△DOC…………………………………1分
∵ ∴ ∴AP=6…………………………2分
又∵BD= ∴由S△PBD=4可得BP=2…………………………3分
∴P(2,6) …………4分 把P(2,6)分别代入 与 可得
一次函数解析式为:y=2x+2…………………………………………………5分
反比例函数解析式为: ………………………………………………6分
(3)由图可得x>2…………………………2分
23.解: (1) 30°...............................1分
= 60°..................................2分
(2) =60°.....................................1分
不妨设BP> , 如图1所示
∵∠BAP=∠BAE+∠EAP=60°+∠EAP
∠EAQ=∠QAP+∠EAP=60°+∠EAP
∴∠BAP=∠EAQ..........................................2分
在△ABP和△AEQ中 AB=AE,∠BAP=∠EAQ, AP=AQ
∴△ABP≌△AEQ(SAS).........................3分
∴∠AEQ=∠ABP=90°...............................4分
∴∠BEF
∴ = 60°…………………………............5分
(事实上当BP≤ 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)
(3)在图1中,过点F作FG⊥BE于点G
∵△ABE是等边三角形 ∴BE=AB= ,由(1)得 30°
在Rt△BGF中, ∴BF= ∴EF=2.......1分
∵△ABP≌△AEQ ∴QE=BP= ∴QF=QE+EF ................2分
过点Q作QH⊥BC,垂足为H
在Rt△QHF中, (x>0)
即y关于x的函数关系式是: .......................................................3分
24.解:(1)对称轴:直线 ……………………………………………………..… 1分
解析式: 或 ……………………………….2分
顶点坐标:M(1, )……….…………………………………………..3分
(2)由题意得
3……………………………………..1分
得: ①…………….………………….……2分

得: ②….………………………………………..………..3分
把②代入①并整理得: (S>0) (事实上,更确切为S>6 )4分
当 时, 解得: (注:S>0或S>6 不写不扣
分) 把 代入抛物线解析式得 ∴点A1(6,3)………5分
(3)存在………………………………………………………………….…..……1分
解法一:易知直线AB的解析式为 ,可得直线AB与对称轴的
交点E的坐标为
∴BD=5,DE= ,DP=5-t,DQ= t
当 ‖ 时,
得 ………2分
下面分两种情况讨论: 设直线PQ与直线AB、x轴的交点分别为点F、G
①当 时,如图1-1 ∵△FQE∽△FAG ∴∠FGA=∠FEQ
∴∠DPQ=∠DEB 易得△DPQ∽△DEB ∴
∴ 得 ∴ (舍去)…………………………3分
当 时,如图1-2
∵△FQE∽△FAG ∴∠FAG=∠FQE
∵∠DQP=∠FQE ∠FAG=∠EBD
∴∠DQP=∠DBE 易得△DPQ∽△DEB

∴ , ∴
∴当 秒时,使直线 、直线 、 轴围成的三角形与直线 、直线 、抛物线的对称轴围成的三角形相似………………………………4分
(注:未求出 能得到正确答案不扣分)
解法二:可将 向左平移一个单位得到 ,再用解法一类似的方法可求得
, ,
∴ , .