有关初中数学史上的数学成就和数学家及其著作

2024-10-29 22:40:16
推荐回答(5个)
回答1:

让我来告诉你:
《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间(纪元之后)。也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年。《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。
有帮助的话希望你支持我一下!

回答2:

1.数学著作《周髀算经》
《周髀算经》应该算是我国更早的一部数学著作,距今已经有两千年左右的历史了。在当时社会的发展经济低下的条件下,人们都是采用用抄写的方式进行学习并且把数学知识传授给下一代的。由此可见《周髀算经》中勾股定理的的问世对人们在进行计算等方式方法上有很大的帮助。那么我国古代有哪些知名的数学著作流传至今呢《周髀算经》可以算的上其中的一部。

2.《九章算数》
《九章算数》也是我国古代有哪些知名的数学著作流传至今中的很重要的一部。其对于我过古代数学以后的发展有着很深远的影响,自从《九章算术》问世以后,一千几百年间以来一直被直接用在数学教育的教科书本里。在一些与中国临近的国家中也都曾经拿它当教科书来教授学生学习数学所以《九章算术》在我国古代数学著作中有着很重要的地位。

3.《宋元算书》
经过从汉到唐一千多年的发展已经形成了独有的特点,在这个基础上到了宋元时期问世的《宋元算书》给了更好的诠释。《宋元算书》其实是一直流传的四大家的数学著作,因其同一个时期出现取得的成就又很高可以在中国古代算是很辉煌的时刻。那么我国古代有哪些知名的数学著作流传至今呢?《宋元算书》也是其中的一个部分。

数学家:
1.贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。

2.秦九韶:〈〈数书九章〉〉

3.李冶:《测圆海镜》——开元术

4.朱世杰:《四元玉鉴》

5.祖冲之是我国杰出的数学家,其主要贡献在数学、天文历法和机械三方面。

回答3:

2欧拉

回答4:

拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。
在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化为低一次的方程(称辅助方程或预解式)以求解。
在数论方面,拉格朗日也显示出非凡的才能。他对费马提出的许多问题作出了解答。如,一个正整数是不多于4个平方数的和的问题等等,他还证明了圆周率的无理性。这些研究成果丰富了数论的内容。
在《解析函数论》以及他早在1772年的一篇论文中,在为微积分奠定理论基础方面作了独特的尝试,他企图把微分运算归结为代数运算,从而抛弃自牛顿以来一直令人困惑的无穷小量,并想由此出发建立全部分析学。但是由于他没有考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,其实只是回避了极限概念,并没有能达到他想使微积分代数化、严密化的目的。不过,他用幂级数表示函数的处理方法对分析学的发展产生了影响,成为实变函数论的起点。
拉格朗日也是分析力学的创立者。拉格朗日在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。
他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。
拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。

回答5:

1、约翰·卡尔·弗里德里希·高斯
(1)高斯有一个很出名的故事:用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。
(2)在他的第一本著名的著作《算术研究》中,作出了二次互反律的证明,成为数论继续发展的重要基础。在这部著作的第一章,导出了三角形全等定理的概念。
2、斐波那契
(1)斐波那契数列还有两个有趣的性质
⒈斐波那契数列中任一项的平方数都等于跟它相邻的前后两项的乘积加1或减1;
⒉任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差1。
3、毕达哥拉斯
毕达哥拉斯学派认为“1”是数的第一原则,万物之母,也是智慧;“2”是对立和否定的原则,是意见;“3”是万物的形体和形式;“4”是正义,是宇宙创造者的象征;“5”是奇数和偶数,雄性与雌性和结合,也是婚姻;“6”是神的生命,是灵魂;“7”是机会;“8”是和谐,也是爱情和友谊;“9”是理性和强大;“10”包容了一切数目,是完满和美好。
毕达哥拉斯定理(勾股定理)