已知函数f(x)=2x2^2+ax+b⼀x^2+1的值域为[1。3],求a,b的值。

2024-11-20 06:20:42
推荐回答(1个)
回答1:

f(x) = (2x²+ax+b)/(x²+1) = y
yx²+y = 2x²+ax+b
(y-2)x²-ax+(y-b) = 0

y≠2时:
判别式△=(-a)²-4(y-2)(y-b) = a² - 4y² + 4(b+2)y -8b ≥ 0
y² - (b+2)y + (8b-a²)/4 ≤ 0
f(x) = (2x²+ax+b)/(x²+1) = y的值域弯哪竖为 [1,3]
即:y² - (b+2)y + (8b-a²)/4 ≤ 0的解集缓凳为 [1,3]
y² - (b+2)y + (8b-a²)/4 ≤ 0等效于(y-1)(y-3)≤0,即y²-4y+3≤0
∴b+2=4,(8b-a²)/4 =3
b=2,
(8×2-a²)/4 =3
16-a²=12
a²=4
a=-2,或2

y=2时,埋大(y-2)x²-ax+(y-b) = 0化为ax+b=2,±2x+2=2,x=0满足要求