(1)∵{bn}是等比数列,首项为4,公比为2,
∴bn=4?2n-1=2n+1,
∵数列{an}是等差数列,且对任意的n∈N*,
都有a1b1+a2b2+a3b3+…+anbn=n?2n+3,
∴a1b1=24,∴a1=
=24 b1
=4,24 4
a1b1+a2b2=2?25,
∴a2b2=2?25?24=48,
∴a2=
=48 b2
=6,48 23
∴d=a2-a1=6-4=2,
∴an=4+(n-1)×2=2n+2.
∴Sn=(a1+a2+a3+…+an)+(b1+b2+…+bn)
=[4n+
×2]+n(n?1) 2
4(1?2n) 1?2
=n2+3n+2n+2-4.
(2)①∵a1=8,a1b1+a2b2+a3b3+…+anbn=n?2n+3,
∴8b1=24,解得b1=2,
设等差数列{an}的公差为d,等比数列{bn}的公比为q,
则
,
16+(8+d)?2q=2?25
2?25+(8+2d)?2q2=3?26
解得d=4,q=2