等价无穷小只有在x趋近于0时才能使用。
公式
当 时,
注:以上各式可通过泰勒展开式推导出来。
无穷小就是以数零为极限的变量。然而常量是变量的特殊一类,就像直线属于曲线的一种。因此常量也是可以当做变量来研究的。这么说来——0是可以作为无穷小的常数。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
定义:
极限为零的变量称为无穷小量,简称无穷小。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。
求极限时使用等价无穷小的条件:一个是被代换的量,在取极限的时候极限值为0;另一个是被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
等价无穷小的定义
(C为常数),就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,C=1且n=1,即
,则称a和b是等价无穷小的关系,记作a~b。
等价无穷小不是只有x趋近于0的时候才能用,而是只有在函数值趋近于0,即函数式是无穷小的时候才能用,且被等价的无穷小是在乘除法中。
例如当x→1的时候,sin(x-1)和x-1这两个都是无穷小,而且等价。那么在x趋近于1的极限中,如果乘除法中出现了sin(x-1),可以等价替换成x-1。
而sin(x-1)在x→0的时候,不是无穷小,那么当x→0的时候,sin(x-1)不能和无论是x还是x-1进行等价。
解答如下:
等价无穷小代换不是只能在X趋近于0时才能用的 等价无穷小
确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,
函数
值f(x)与零无限接近,即f(x)=0(或f(1/x)=0),则称f(x)为当x→x0时的无穷小量。
例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim(x→x0)时的无穷小,
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)
如果lim b/a=∞,就是说b是比a低阶的无穷小。
比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了。
如果lim b/a^n=常数C≠0(k>0),就说b是关于a的n阶的无穷小, b和a^n是同阶无穷小。
下面来介绍等价无穷小:
从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b
等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a~a'、b~b'则:lim a/b=lim a'/b'
接着我们要求这个极限 lim(x→0) sin(x)/(x+3)
根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0
等价无穷小代换不是只能在X趋近于0时才能用的 等价无穷小
确切地说,当自变量x无限接近某个值x0(x0可以是0、∞、或是别的什么数)时,
函数
值f(x)与零无限接近,即f(x)=0(或f(1/x)=0),则称f(x)为当x→x0时的无穷小量。
例如,f(x)=(x-1)2是当x→1时的无穷小量,f(n)=1/n是当n→∞时的无穷小量,f(x)=sinx是当x→0时的无穷小量。特别要指出的是,切不可把很小的数与无穷小量混为一谈。
这里值得一提的是,无穷小是可以比较的:
假设a、b都是lim(x→x0)时的无穷小,
如果lim b/a=0,就说b是比a高阶的无穷小,记作b=o(a)
如果lim b/a=∞,就是说b是比a低阶的无穷小。
比如b=1/x^2, a=1/x。x->无穷时,通俗的说,b时刻都比a更快地趋于0,所以称做是b高阶。假如有c=1/x^10,那么c比a b都要高阶,因为c更快地趋于0了。
如果lim b/a^n=常数C≠0(k>0),就说b是关于a的n阶的无穷小, b和a^n是同阶无穷小。
下面来介绍等价无穷小:
从无穷小的比较里可以知道,如果lim b/a^n=常数,就说b是a的n阶的无穷小, b和a^n是同阶无穷小。特殊地,如果这个常数是1,且n=1,即lim b/a=1,则称a和b是等价无穷小的关系,记作a~b
等价无穷小在求极限时有重要应用,我们有如下定理:假设lim a~a'、b~b'则:lim a/b=lim a'/b'
接着我们要求这个极限 lim(x→0) sin(x)/(x+3)
根据上述定理 当x→0时 sin(x)~x (重要极限一) x+3~x+3 ,那么lim(x→0) sin(x)/(x+3)=lim(x→0) x/(x+3)=0
是只有在x趋于0时才可以用的