如图,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2

2024-11-01 09:03:41
推荐回答(1个)
回答1:

解答:(1)证明:∵∠ACB=90°,CD是AB边上的中线,
∴CD=AD=DB.
∵∠B=30°,
∴∠A=60°.
∴△ACD是等边三角形.
∵CE是斜边AB上的高,
∴AE=ED.

(2)解:由(1)得AC=CD=AD=2ED,
又AC=2,
∴CD=2,ED=1.
CE=

22?1
3

∴△CDE的周长=CD+ED+CE=2+1+
3
=3+
3