(1)由题意得,2an+Sn=1,
∴2an-1+Sn-1=1(n≥2),
两式相减,得an=
an?1,…(3分)2 3
又当n=1时,有3a1=1,即a1=
,1 3
∴数列{an}为等比数列,
∴an=
(1 3
)n?1.…(5分)2 3
(2)①∵数列{an}为等差数列,
由通项公式与求和公式,得:
2an+Sn=2a1+2(n?1)d+
n2+(a1?d 2
)n=d 2
n2+(a1+d 2
)n+2a1?2d,3d 2
∵A=1,C=-2,∴
=1,a1-d=-2,d 2
∴d=2,a1=1,∴an=2n-1.(10分)
②bn=
1
an
+an+1
an+1
an
=
1 (2n?1)
+(2n+1)
2n+1
2n?1
=
1
2n?1
(
2n+1
+
2n?1
)
2n+1
=
?
2n+1
2n?1
2n?1
(
2n+1
+
2n?1
)(
2n+1
?
2n+1
)
2n?1
=
?
2n+1
2n?1
2