高数偏导数题,例2:对x求导时,ȢU⼀Ȣx后面的式子是怎么求出来的?望详解

2024-11-17 05:14:51
推荐回答(2个)
回答1:

例2. u = √(x²+y²+z²) ........................(1)
求:偏导数 ∂u/∂x、∂u/∂y、∂u/∂z = ?
解:u² = x²+y²+z²...............................(2)
2u∂u/∂x = 2x...............................(3)
∂u/∂x = x/u = x/√(x²+y²+z²) .........(4)
这三步您一定看得懂,且要比题中介绍的步骤简单得多,
重要的是避开了分式、根号下求导的复杂过程。
根据(1)式对xyz的对称性,立马写出:
∂u/∂y = y/u = y/√(x²+y²+z²) .........(5)
∂u/∂z = z/u = z/√(x²+y²+z²) ..........(6)

回答2: