同向跑时,相遇时间=跑道÷两人速度差(两人起点相同用这个公式)
甲的路程 +乙的路程=环形周长
追及时间=路程差÷速度差
速度差=路程差÷追及时间 追及时间×速度差=路程差
快的路程-慢的路程=曲线的周长
行程问题基本数量关系式有:
1、速度×时间=距离。
2、距离÷速度=时间。
3、距离÷时间=速度。
解答相遇问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
同向跑时,相遇时间=跑道÷两人速度差(两人起点相同用这个公式)
甲的路程 +乙的路程=环形周长
追及时间=路程差÷速度差
速度差=路程差÷追及时间 追及时间×速度差=路程差
快的路程-慢的路程=曲线的周长
一、追及问题
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到。一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
公式:追及问题 两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题 速度差×追及时间=追及路程 路程差÷速度差=追及时间(同向追及)
二、公式
(S1-S2)=(v1- v2)*t
三、追及
速度差×追及时间=路程差
路程差÷速度差=追及时间(同向追及)
速度差=路程差÷追及时间
甲经过路程—乙经过路程=追及时相差的路程
四、基本形式:
A.匀加速直线运动的物体追匀速直线运动的物体。
这种情况只能追上一次两者追上前有最大距离,条件:v加=v匀。
B.匀减速直线运动追及匀速运动的物体。
当v减=v匀时两者仍没达到同一位置,则不能追上。
当v减=v匀时两者在同一位置,则恰好能追上,也是两者避免相撞的临界条件。
当两者到达同一位置时,v减>v匀,则有两次相遇的机会。
C.匀速运动的物体追及匀加速直线运动的物体。
当两者到达同一位置前,就有v加=v匀,则不能追及。
当两者到达同一位置时,v加=v匀,则只能相遇一次。
当两者到达同一位置时,v加 D.匀速运动的物体追及匀减速直线运动的物体,这种情 况一定能追上。 E.匀加速运动的物体追及匀减速直线运动的物体,这种情况一定能追上。 F.匀减速运动的物体追及匀加速直线运动的物体。 当两者到达同一位置前, v减=v加,则不能追及。 当v减=v加时两者恰好到达同一位置,则只能相遇一次。 当第一次相遇时v减>v加,则有两次相遇的机会。 五、相遇 相遇路程÷速度和=相遇时间 速度和×相遇时间=相遇路程 相遇路程÷相遇时间=速度和 甲走的路程+乙走的路程=总路程 注意:两个运动的物体相遇,即相对同一参考系来说它们的位移相等。在解题中一定要注意相遇时间小于运动的总时间。 六、举例 例1:甲、乙两地相距710千米,货车和客车同时从两地相对开出,已知客车每小时行55千米,6小时后两车仍然相距20千米。求货车的速度? 分析:货车和客车同时从两地相对开出,6小时后两车仍然相距20千米,从710千米中减去20千米,就是两车6小时所行的路。又已知客车每小时行55千米,货车的速度即可求得。 计算: (710-20)÷6-55 =690÷6-55 =115-55=60(千米) 答:货车时速为60千米。
同向跑时,相遇时间=跑道÷两人速度差(两人起点相同用这个公式)
甲的路程 +乙的路程=环形周长
追及时间=路程差÷速度差
速度差=路程差÷追及时间 追及时间×速度差=路程差
快的路程-慢的路程=曲线的周长
n d n d j ds j slkd