高等数学求积分

2024-12-03 06:44:33
推荐回答(1个)
回答1:

这里进行凑微分即可
显然1/√x dx=2d√x
那么原积分=∫ 2arctg√x /(1+x) d√x
=∫ 2arctg√x darctg√x
=(arctg√x)² +C,C为常数
而∫dx/(1+x^1/3) 令x=t^3
得到原积分=∫ 3t^2/(1+t) dt
=∫3(t-1)+3/(1+t) dt
=3/2 *(t-1)^2 +3ln|1+t| 代入t的上下限2和0
=3ln3