(sinx+cosx)⼀(sinx-cosx)^(1⼀3)求不定积分

2024-11-14 07:25:20
推荐回答(3个)
回答1:

具体回答如图所示:

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.

可以证明,任何真分式总能分解为部分分式之和。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式。

正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。

参考资料来源:百度百科——不定积分

回答2:

如图所示:

回答3:

凑微分
=∫(sinx-cosx)^(-1/3)d(sinx-cosx)
=(3/2)(sinx-cosx)^(2/3)+C