(I)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
当n=1时适合上式,∴an=2n-1.(n∈N*).
(II)∵
=1 anan+1
=1 (2n?1)(2n+1)
(1 2
?1 2n?1
).1 2n+1
∴数列{
}的前n项和为Tn=1 anan+1
[(1?1 2
)+(1 3
?1 3
)+…+(1 5
?1 2n?1
)]1 2n+1
=
(1?1 2
),1 2n+1
∵任意n∈N*,Tn<
,对任意的n∈N*,Tn<m恒成立,1 2
∴m≥
.1 2
∴实数m的取值范围是[
,+∞).1 2