函数的周期性有什么用?

2024-11-17 14:03:48
推荐回答(1个)
回答1:

函数周期性的关键的几个字“有规律地重复出现”。
当自变量增大任意实数时(自变量有意义),函数值有规律的重复出现
假如函数f(x)=f(x+T)(或f(x+a)=f(x-b)其中a+b=T),则说T是函数的一个周期.T的整数倍也是函数的一个周期.
周期函数性质:
(1)若T(≠0)是f(X)的周期,则-T也是f(X)的周期。
(2)若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。
(3)若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。
(4)若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。
(5)T*是f(X)的最小正周期,且T1、T2分别是f(X)的两个周期,则 (Q是有理数集)
(6)若T1、T2是f(X)的两个周期,且 是无理数,则f(X)不存在最小正周期。
(7)周期函数f(X)的定义域M必定是双方无界的集合。