对于∫cosx/(sinx+cosx)dx
令x=π/2-t,则dx=-dt
积分区间: x=0, t=π/2;x=π/2, t=0
带入得:
∫cos(π/2-t)/(sin(π/2-t)+cos(π/2-t))d(-t) 积分区间[π/2, 0]
= -∫sint/cost+sint)dt
对调积分上下限。
=∫sint/cosx+sint)dt 积分区间[0 ,π/2]
则
∫sinx/cosx+sinx)dx=∫cosx/(sinx+cosx)dx
=1/2(∫sinx/cosx+sinx)dt+∫cosx/(sinx+cosx)dx )
=1/2∫1dt 积分区间[0 ,π/2]
=1/2*π/2
=π/4