如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF.(1)求证:

2024-11-06 21:57:00
推荐回答(1个)
回答1:

(1)证明:连结B1D1,BD,∵四边形A1B1C1D1是正方形,∴B1D1⊥A1C1
在正方体ABCD-A1B1C1D1中,
∵DD1⊥平面A1B1C1D1,A1C1?平面A1B1C1D1,∴A1C1⊥DD1
∵B1D1∩DD1=D1,B1D1,DD1?平面BB1D1D,∴A1C1⊥平面BB1D1D.
∵EF?平面BB1D1D,∴EF⊥A1C1
(2)解:连接AC交BD于点O,由于ABCD-A1B1C1D1为正方体,
∴AA1∥BB1,AA1=BB1,BB1∥CC1,BB1=CC1,AA1∥CC1,AA1=CC1
∴四边形AA1C1C为平行四边形,AC∥A1C1,AC=A1C1
由(1)知,A1C1⊥平面BB1D1D,∴AC⊥平面BB1D1D,∴AO⊥平面BB1D1D,
由AC=

AB2+BC2
=
a2+a2
=
2
a,
∴AO=
1
2
AC=
2
2
a

在直角梯形BDEF中,直角腰BD=AC=
2
a,上底BF=
1
3
BB1=
1
3
a,下底DE=
1
2
DD1=
1
2
a,
因此梯形BDEF的面积