(1)证明:连结B1D1,BD,∵四边形A1B1C1D1是正方形,∴B1D1⊥A1C1.
在正方体ABCD-A1B1C1D1中,
∵DD1⊥平面A1B1C1D1,A1C1?平面A1B1C1D1,∴A1C1⊥DD1.
∵B1D1∩DD1=D1,B1D1,DD1?平面BB1D1D,∴A1C1⊥平面BB1D1D.
∵EF?平面BB1D1D,∴EF⊥A1C1.
(2)解:连接AC交BD于点O,由于ABCD-A1B1C1D1为正方体,
∴AA1∥BB1,AA1=BB1,BB1∥CC1,BB1=CC1,AA1∥CC1,AA1=CC1,
∴四边形AA1C1C为平行四边形,AC∥A1C1,AC=A1C1
由(1)知,A1C1⊥平面BB1D1D,∴AC⊥平面BB1D1D,∴AO⊥平面BB1D1D,
由AC=
=
AB2+BC2
=
a2+a2
a,
2
∴AO=
AC=1 2
a,
2
2
在直角梯形BDEF中,直角腰BD=AC=
a,上底BF=
2
BB1=1 3
a,下底DE=1 3
DD1=1 2
a,1 2
因此梯形BDEF的面积