不一定。
不定积分寻找的是原函数,这个原函数的导数就是被积函数,这个被积函数是不可以出现间断点的。一旦出现了间断点,不定积分将手足无措,无法解决,所以就要求被积函数不可以有任何的间断点。
因为被积函数没有任何间断点,原函数的导函数就等于被积函数,这是不定积分设定的。在这样的情况下的可积函数是指被积函数,积出来的原函数是连续的。
在原函数可导的假设下,它连续是先决条件,连续不一定可导,而可导的函数必须是连续函数。原函数既然可导,那原函数就必须连续,这是可导的必要条件。
函数的由来:
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”
所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
是的。。函数可积,则原函数连续;函数连续,则原函数可导......
连续一定可积,但可积函数不一定连续,因为可积的充分条件除了连续还有有界且有限个间断点
可积不一定连续,连续一定可积。连续不一定可导,可导一定连续。不过在变限积分里,可积→连续→可导(原函数存在定理)
函数可积,原函数都不一定存在,但是连续函数一定存在原函数