1+(1+2)+(1+2+3)+...+(1+2+3+...n)
=1*n+2*(n-1)+3*(n-2)+...+(n-1)*[n-(n-2)]+n*[n-(n-1)]
=(n+2n+3n+...n*n)-[2*(2-1)+3*(3-1)+4*(4-1)+...+n*(n-1)]
=n*n*(n+1)/2-(2*2+3*3+4*4+...n*n)+(2+3+4+...+n)
=n*n*(n+1)/2-n*(n+1)*(2n+1)/6+1+n*(n+1)/2-1
=n*(n+1)*(n+2)/6