证明:
∵AB是直径
∴∠ADB=∠ADC=90°
即AD⊥BC
∵AB=AC,即△ABC是等腰三角形
∴AD是∠BAC的平分线(三线合一)
∴∠BAD=∠CAD
即∠OAD=∠ODA=∠CAD(OA=OD)
∵DE⊥AC
∴∠DEC=∠ADC
∵∠C=∠C
∴△ACD∽△DCE
∴∠CDE=∠CAD=∠ODA
∵∠CDE+∠ADE=90°
∴∠ODA+∠ADE=90°
即∠ODE=90°
∴OD⊥DE
∴DE是圆O的切线
性质:
1、切线和圆只有一个公共点;
2、切线和圆心的距离等于圆的半径;
3、切线垂直于经过切点的半径;
4、经过圆心垂直于切线的直线必过切点;
5、经过切点垂直于切线的直线必过圆心;
6、从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
证明圆的切线的方法:⑴、圆心到直线的距离等于半径;⑵、过半径外端且垂直于半径。此题可用第二种方法解决,即:证明DE⊥OD。证法如下:连结OD,所以AD⊥BC,由于AB=AC,利用等腰三角形的“三线合一”,知点D为BC的中点,所以OD‖AB,又由于DE⊥AB,那就有DE⊥OD,即DE为圆的切线。证毕。
连接DO因为DO=CO所以角C=角ODC而AB=AC所以角B=角C所以角B=角ODC所以DO平行AB又因为DE垂直AB所以DE垂直DO所以DE是圆的切线。
00